

C Compiler Reference Manual

July 2005

i

Table Of Contents
Overview ..1

PCB, PCM and PCH Overview ..1
Technical Support...1
Installation ..2
Invoking the Command Line Compiler ...2
MPLAB Integration ...4
Directories ..4
File Formats..5
Direct Device Programming ...5
Device Calibration Data..5
Utility Programs ..6

PCW IDE..7
File Menu..7
Project Menu ..8
Edit Menu ...9
Options Menu ...10
Compile ..13
PCW Compile ...13
View Menu..13
Tools Menu...15
Help Menu ..17
PCW Editor Keys..18
Project Wizard ..20

CCS Debugger...21
Debugger - Overview..21
Debugger - Menu..21
Debugger - Configure ...21
Debugger - Control ...22
Debugger- Enable/Disable ...22
Debugger - Watches...23
Debugger - Breaks ...23
Debugger - RAM...23
Debugger - ROM ..24
Debugger -Data EEPROM ...24
Debugger - Stack..24
Debugger - Eval..24
Debugger - Log...25
Debugger - Monitor...25
Debugger - Peripherals ..25
Debugger - Snapshot ...26

Pre-Processor ..27
PRE-PROCESSOR..27

C Compiler Reference Manual

ii

Pre-Processor Directives..28
#ASM..28
#ENDASM ..28
#BIT ..32
#BUILD ...32
#BYTE ..33
#CASE..34
__DATE__ ..35
#DEFINE ..35
#DEVICE ..36
__DEVICE__ ..38
#ERROR...38
__FILE__ ..39
#FILL_ROM..39
#FUSES..40
#HEXCOMMENT() ...41
#ID ..41
#IF expr ..42
#ELSE ..42
#ELIF ..42
#ENDIF...42
#IGNORE_WARNINGS..43
#IFDEF ...44
#IFNDEF...44
#ELSE ..44
#ELIF ..44
#ENDIF...44
#INCLUDE..45
#INLINE ..46
#INT_xxxx...46
#INT_DEFAULT ...48
#INT_GLOBAL ...49
__LINE__..49
#LIST ..50
#LOCATE ...50
#NOLIST...51
#OPT ..51
#ORG..52
__PCB__ ..53
__PCM__..54
__PCH __ ...54
#PRAGMA ..55
#PRIORITY...55
#RESERVE ..56
#ROM ...56

Table Of Contents

iii

#SERIALIZE ...57
#SEPARATE ..59
__TIME __ ..60
#TYPE ..60
#UNDEF ...61
#USE DELAY ...62
#USE FAST_IO ..62
#USE FIXED_IO...63
#USE I2C..63
#USE RS232 ...64
#USE STANDARD_IO..67
#ZERO_RAM..68

Data Definitions..69
Data Types ...69

Function Definition ...71
Function Definition..71
Reference Parameters ...72

C Statements And Expressions ...73
Program Syntax..73
Comment ..73
STATEMENTS ...74
Expressions ..75
Operators..76
Operator Precedence ...77
Trigraph Sequences ...77

Built-In Functions ...79
ABS() ..82
ACOS() ...82
ASIN() ...82
ASSERT()...83
ATOF()..83
ATOI() ...84
ATOL() ..84
ATOI32()...84
BIT_CLEAR()..85
BIT_SET()..86
BIT_TEST() ..86
BSEARCH()..87
CALLOC()...88
CEIL() ...89
CLEAR_INTERRUPT()...89
COS()..90
COSH()...90
DELAY_CYCLES() ...90
DELAY_MS() ..91

C Compiler Reference Manual

iv

DELAY_US() ..92
DISABLE_INTERRUPTS() ...93
DIV() ...94
LDIV() ...94
ENABLE_INTERRUPTS() ..95
ERASE_PROGRAM_EEPROM()...96
EXP() ..96
EXT_INT_EDGE() ..97
FABS() ..98
FLOOR()...99
FMOD()...99
FREE()..100
FREXP() ...101
GET_TIMERx()...101
GETC() ...102
CH() ..102
GETCHAR()..102
FGETC() ...102
GETENV() ..104
GETS() ...106
FGETS() ...106
GOTO_ADDRESS() ...107
I2C_POLL() ..108
I2C_READ()..108
I2C_START()..109
I2C_STOP()..110
I2C_WRITE() ..111
INPUT() ..112
INPUT_STATE()...113
INPUT_x()...114
ISALNUM(char) ..115
ISALPHA(char) ...115
ISDIGIT(char) ...115
ISLOWER(char)..115
ISSPACE(char)...115
ISUPPER(char) ..115
ISXDIGIT(char)...115
ISCNTRL(x) ..115
ISGRAPH(x) ...115
ISPRINT(x) ...115
ISPUNCT(x)..115
ISAMOUNG()..116
ITOA()...117
KBHIT()...118
LABEL_ADDRESS()...119

Table Of Contents

v

LABS() ..119
LCD_LOAD() ..120
LCD_SYMBOL() ...121
LDEXP() ...122
LOG()..122
LOG10()..123
LONGJMP()..124
MAKE8() ...125
MAKE16() ...125
MAKE32() ...126
MALLOC() ..127
MEMCPY() ...128
MEMMOVE() ..128
MEMSET()..129
MODF()...129
OFFSETOF() ..130
OFFSETOFBIT() ..130
OUTPUT_A() ..131
OUTPUT_B() ..131
OUTPUT_C()..131
OUTPUT_D()..131
OUTPUT_E() OUTPUT_F()..131
OUTPUT_G()..131
OUTPUT_H()..131
OUTPUT_J()...131
OUTPUT_K() ..131
OUTPUT_BIT()...132
OUTPUT_FLOAT()...133
OUTPUT_HIGH() ...134
OUTPUT_LOW() ..135
OUTPUT_TOGGLE() ...135
PERROR()..136
PORT_A_PULLUPS...137
PORT_B_PULLUPS() ..137
POW()...138
PWR()...138
PRINTF() ..139
FPRINTF() ..139
PSP_OUTPUT_FULL() ..141
PSP_INPUT_FULL() ..141
PSP_OVERFLOW() ...141
PUTC() ...142
PUTCHAR()...142
FPUTC() ...142
PUTS()..143

C Compiler Reference Manual

vi

FPUTS() ...143
QSORT() ..144
RAND() ...145
READ_ADC()..145
READ_BANK() ...146
READ_CALIBRATION() ...147
READ_EEPROM()..148
READ_PROGRAM_EEPROM ()..149
READ_PROGRAM_MEMORY () ...149
READ_EXTERNAL_MEMORY ()...149
REALLOC() ..150
RESET_CPU()..151
RESTART_CAUSE() ..152
RESTART_WDT() ..152
ROTATE_LEFT()..154
ROTATE_RIGHT() ...154
SET_ADC_CHANNEL() ...155
SET_PWM1_DUTY()..156
SET_PWM2_DUTY()..156
SET_PWM3_DUTY()..156
SET_PWM4_DUTY()..156
SET_PWM5_DUTY()..156
SET_POWER_PWMX_DUTY() ...157
SET_POWER_PWM_OVERRIDE()...158
SET_RTCC() ..159
SET_TIMER0() ...159
SET_TIMER1() ...159
SET_TIMER2() ...159
SET_TIMER3() ...159
SET_TIMER4() ...159
SET_TIMER5() ...159
SET_TRIS_A()..160
SET_TRIS_B()..160
SET_TRIS_C() ...160
SET_TRIS_D() ...160
SET_TRIS_E()..160
SET_TRIS_G() ...160
SET_TRIS_H() ...160
SET_TRIS_J() ..160
SET_TRIS_K()..160
SET_UART_SPEED() ..161
SETJMP() ...162
SETUP_ADC(mode)...163
SETUP_ADC_PORTS() ...164
SETUP_CCP1()..165

Table Of Contents

vii

SETUP_CCP2()..165
SETUP_CCP3()..165
SETUP_CCP4()..165
SETUP_CCP5()..165
SETUP_COMPARATOR() ...166
SETUP_COUNTERS() ...167
SETUP_EXTERNAL_MEMORY()..168
SETUP_LCD() ..168
SETUP_LOW_VOLT_DETECT() ...169
SETUP_OSCILLATOR() ..170
SETUP_POWER_PWM()...171
SETUP_POWER_PWM_PINS() ..173
SETUP_PSP() ..174
SETUP_SPI() ...174
SETUP_SPI2() ...174
SETUP_TIMER_0 () ...175
SETUP_TIMER_1() ..176
SETUP_TIMER_2() ..177
SETUP_TIMER_3() ..178
SETUP_TIMER_4() ..179
SETUP_TIMER_5() ..180
SETUP_UART() ...180
SETUP_VREF()..182
SETUP_WDT () ..183
SHIFT_LEFT() ..184
SHIFT_RIGHT()..185
SIN () COS() ...186
TAN() ..186
ASIN() ...186
ACOS() ...186
ATAN()..186
SINH()...186
COSH()...186
TANH() ...186
ATAN2()..186
SINH()...188
SLEEP()..188
SPI_DATA_IS_IN()...188
SPI_DATA_IS_IN2()...188
SPI_READ() ...189
SPI_READ2() ...189
SPI_WRITE()..190
SPI_WRITE2()..190
SPRINTF()..191
SQRT() ...191

C Compiler Reference Manual

viii

SRAND()...192
STANDARD STRING FUNCTIONS...193
MEMCHR() ...193
MEMCMP()...193
STRCAT()...193
STRCHR() ..193
STRCMP() ..193
STRCOLL()...193
STRCSPN() ..193
STRICMP() ...193
STRLEN() ...193
STRLWR() ..193
STRNCAT() ..193
STRNCMP() ...193
STRNCPY() ..193
STRPBRK() ..193
STRRCHR()..193
STRSPN()...193
STRSTR()...193
STRXFRM()..193
STRCPY()...195
STRCOPY()..195
STRTOD() ..196
STRTOK()...197
STRTOL() ...198
STRTOUL() ..199
SWAP()...200
TAN() ..200
TANH() ...200
TOLOWER() ...201
TOUPPER()...201
WRITE_BANK()..201
WRITE_EEPROM() ..202
WRITE_EXTERNAL_MEMORY() ...203
WRITE_PROGRAM_EEPROM () ...204
WRITE_PROGRAM_MEMORY()..205

Standard C Definitions ...207
errno.h ..207
float.h ..207
limits.h ..209
locale.h ...209
setjmp.h ..209
stddef.h...210
stdio.h ...210
stdlib.h ..210

Table Of Contents

ix

Compiler Error Messages ..211
Compiler Warning Messages ...222

Common Questions And Answers ...225
How does one map a variable to an I/O port?..225
Why is the RS-232 not working right? ..227
How can I use two or more RS-232 ports on one PIC®?...............................229
How does the PIC® connect to a PC? ...230
What can be done about an OUT OF RAM error?...231
Why does the .LST file look out of order? ..232
How does the compiler determine TRUE and FALSE on expressions?233
Why does the compiler use the obsolete TRIS? ..234
How does the PIC® connect to an I2C device? ...235
Instead of 800, the compiler calls 0. Why? ...235
Instead of A0, the compiler is using register 20. Why?236
How do I directly read/write to internal registers? ..237
How can a constant data table be placed in ROM?.......................................238
How can the RB interrupt be used to detect a button press?239
What is the format of floating point numbers?..240
Why does the compiler show less RAM than there really is?241
What is an easy way for two or more PICs® to communicate?242
How do I write variables to EEPROM that are not a byte?243
How do I get getc() to timeout after a specified time?....................................244
How can I pass a variable to functions like OUTPUT_HIGH()?.....................245
How do I put a NOP at location 0 for the ICD? ..246
How do I do a printf to a string? ...246
How do I make a pointer to a function?..247
How much time do math operations take?...248
How are type conversions handled? ..249

Example Programs...251
EXAMPLE PROGRAMS...251

SOFTWARE LICENSE AGREEMENT ..267

1

Overview
PCB, PCM and PCH Overview

The PCB, PCM and PCH are separate compilers. PCB is for 12 bit opcodes,
 PCM is for 14 bit opcodes and PCH is for the 16 and 18 bit PICmicro® MCU.
 Since much is in common among the compilers, all three are covered in this
reference manual. Features and limitations that apply to only specific controllers
are indicated within. These compilers are specially designed to meet the unique
needs of the PICmicro® MCU controllers. These tools allow developers to
quickly design application software for these controllers in a highly readable,
high-level language.

The compilers have some limitations when compared to a more traditional C
compiler. The hardware limitations make many traditional C compilers
ineffective. As an example of the limitations, the compilers will not permit
pointers to constant arrays. This is due to the separate code/data segments in
the PICmicro® MCU hardware and the inability to treat ROM areas as data. On
the other hand, the compilers have knowledge about the hardware limitations
and do the work of deciding how to best implement your algorithms. The
compilers can efficiently implement normal C constructs, input/output operations
and bit twiddling operations.

Technical Support

The latest software can be downloaded via the Internet at:

http://www.ccsinfo.com/download.shtml

for 30 days after the initial purchase. For one year’s worth of updates, you can
purchase a Maintenance Plan directly from CCS. Also found on our web page
are known bugs, the latest version of the software, and other news about the
compiler.

We strive to ensure that each upgrade provides greater ease of use along with
minimal, if any, problems. However, this is not always possible. To ensure that
all problems that you encounter are corrected in a diligent manner, we suggest
that you email us at support@ccsinfo.com outlining your specific problem along
with an attachment of your file. This will ensure that solutions can be suggested
to correct any problem(s) that may arise. We try to respond in a timely manner
and take pride in our technical support.

C Compiler Reference Manual

2

Secondly, if we are unable to solve your problem by email, feel free to telephone
us at (262) 522-6500 x 32. Please have all your supporting documentation on-
hand so that your questions can be answered in an efficient manner. Again, we
will make every attempt to solve any problem(s) that you may have. Suggestions
for improving our software are always welcome and appreciated.

Installation

PCB, PCM, AND PCH INSTALLATION:
Insert the disk in drive A and from Windows Start|Run type:
 A:SETUP

PCW INSTALLATION:
Insert CD ROM, select each of the programs you wish to install and follow the
on-screen instructions.

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:
 CCSC options cfilename

Valid options:
 +FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH

(PIC18XXX)
 +DM .MAP format debug file

+FS Select SXC (SX) +DC Expanded .COD format debug file
+ES Standard error file +EO Old error file format
+T Create call tree (.TRE) -T Do not generate a tree file
+A Create stats file (.STA) -A Do not create stats file (.STA)
+EW Show warning

messages
 -EW

Suppress warnings (use with +EA)

+EA Show all error messages
and all warnings

 -E Only show first error

 +Yx Optimization level x (0-9) +DF Enables the output of a
COFF debug file.

The xxx in the following are optional. If included it sets the file extension:

Overview

3

 +LNxxx Normal list file +O8xxx 8 bit Intel HEX output file
+LSxxx MPASM format list

file
 +OWxxx 16 bit Intel HEX output file

+LOxxx Old MPASM list file +OBxxx Binary output file
+LYxxx Symbolic list file -O Do not create object file

 -L Do not create list file

+P Keep compile status window up after compile
+Pxx Keep status window up for xx seconds after compile
+PN Keep status window up only if there are no errors
+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile
+DF COFF Debug file
I+="..." Same as I="..." Except the path list is appended to the current list
i+"..." Set include directory search path, for example:

 I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used to
supply the include file paths.

-P Close compile window after compile is complete
+M Generate a symbol file (.SYM)
-M Do not create symbol file
+J Create a project file (.PJT)
-J Do not create PJT file
+ICD Compile for use with an ICD
#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:

#debug="true"
+Gxxx="yyy" Same as #xxx="yyy"
+? Brings up a help file
-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)
+V Show compiler version (no compile is done)
+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as
follows:
 +FM +ES +J +DC +Y9 -T -A +M +LNlst +O8hex -P -Z

C Compiler Reference Manual

4

If @filename appears on the CCSC command line, command line options will be
read from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command
line parameters are read from that file before they are processed on the
command line.

Examples:
 CCSC +FM C:\PICSTUFF\TEST.C
 CCSC +FM +P +T TEST.C

MPLAB Integration

MPLAB 5:
If MPLAB is installed before the compiler, then integration with MPLAB is
automatic. Otherwise use the following command:
CCSC +SETUP

MPLAB 6:
A plug-in program must be executed on the computer with MPLAB 6 before
MPLAB 6 can use the CCS C compiler. If this plug-in did not come with your
version of MPLAB you should download it from the download page of the CCS
web site.

The specific instructions for compiling and running from MPLAB will vary
depending on the version. In general when creating a project be sure to select
the CCS C Compiler as the tool suite, then follow the normal MPLAB instructions.

To download the latest version of MPLAB to go Microchip's web page at:
http://www.microchip.com

Directories

The compiler will search the following directories for Include files.

• Directories listed on the command line
• Directories specified in the .PJT file
• The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs and all Include files are in C:\Program Files\PICC\EXAMPLES.

Overview

5

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
C:\Program Files\PICC\DLL. Old compiler versions may be kept by renaming
this directory.

File Formats

The compiler can output 8 bit hex, 16 bit hex, and binary files. Two listing formats
are available. Standard format resembles the Microchip tools and may be
required by some third-party tools. The simple format is easier to read. The
debug file may either be a Microchip .COD file or Advanced Transdata .MAP file.
All file formats and extensions are selected via the Options|File Formats menu
option in the Windows IDE.

Direct Device Programming

The IDE has a program option in the main menu bar. When invoked, the IDE will
issue a command to start the user's device programmer. The commands are
specified in the Options|Debugger/Programer window. The %H is replaced
with the HEX filename and %D is replaced with the device number. Put a ! at the
end of the command line if you would like a pause before returning to IDE. Only
programs that can be invoked by a command will work with this option.

Device Calibration Data

Some devices from Microchip have calibration data programmed into the
program area when shipped from the factory. Each part has its own unique data.
This poses some special problems during development. When an UV erasable
(windowed) part is erased, the calibration data is erased as well. Calibration data
can be forced into the chip during programming by using a #ROM directive with
the appropriate data.

The PCW package includes a utility program to help streamline this process.
When a new chip is purchased, the chip should be read into a hex file. Execute
the Tools|Extract Cal Data Utility and select a name (.C) for this part. The
utility will create an Include File with specified name that will have the correct
#ROM directives for the part. During prototype development add a #Include
directive and change the name before each build to the part # that is about to be
programmed. For production (OTP parts) simply comment out the #Include.

C Compiler Reference Manual

6

Utility Programs

SIOW SIOW is a Windows utility (PCW only). SIOW is a simple

"dumb terminal" program that may be run on a PC to perform
input and output over a serial port. SIOW is handy since it will
show all incoming characters. If the character is not a normally
displayable character, it will show the hex code.

DEVEDIT DEVEDIT is a Windows utility (PCW only) that will edit the
device database. The compiler uses the device database to
determine specific device characteristics at compile time.
This utility will allow devices to be added, modified or
removed. To add a device, highlight the closest equivalent
chip and click on COPY. To edit or delete, highlight the
device and click on the appropriate button.

PCONVERT PCONVERT is a Windows utility (PCW only) that will perform
conversions from various data types to other types. For
example, Floating Point decimal to 4 BYTE Hex. The utility
opens a small window to perform the conversions. This
window can remain active during a PCW or MPLAB session.
This can be useful during debugging.

CCSC +Q This will list all devices in the compiler database.

CCSC +FM +V This will show the current compiler version. Replace +FM
with +FB or +FH for the other compilers.

7

PCW IDE
File Menu

New Creates a new file

Open Opens a file into the editor. If there are no other files open then

the project name is set to this files name. Ctrl-O is the shortcut.

Reopen Lists all the recently used files and allows the user to open
them by selecting the appropriate file.

Save Saves the file currently selected for editing. Ctrl-S is the
shortcut.

Save As Prompts for a filename to save the currently selected file.

Save All All open files are saved to disk.

C Compiler Reference Manual

8

Encrypt Creates an encrypted include file. The standard compiler

#include directive will accept files with this extension and decrypt
them as they are read. This allows include files to be distributed
without releasing the source code.

Close Closes the file currently open for editing. Note that while a file is
open in PCW for editing no other program may access the file.
Shift F11 is the shortcut.

Close All Closes all files.

Print Prints the currently selected file.

Printer Setup Allows the selection of a printer and the printer settings.

Exit Terminates PCW

Project Menu

New Creates a new project. A project may be created manually or via a

wizard. If created manually only a .PJT file is created to hold basic
project information. An existing .C main file may be specified or an
empty one may be created. The wizard will allow the user to specify
project parameters and when complete a .C, .H and .PJT file are
created. Standard source code and constants are generated based on
the specified project parameters.

New|
PICWIZARD

This command will bring up a number of fill-in-the-blank forms about
your new project. RS232 I/O and i2C characteristics, timer options,
interrupts used, A/D options, drivers needed and pin names all may be
specified in the forms. When drivers are selected, the tool selects pins
required and pins that can be combined will be. The user may edit the
final pins selections. After all selections are made the initial .c and .h
files are created with #defines, #includes and initialization commands
required for your project. This is a fast way to start a new project.
Once the files are created you cannot return to the menus to make
further changes.

Open A .PJT file is specified and the main source file is loaded.

PCW IDE

9

Open
All Files

A .PJT file is specified and all files used in the project are opened.
In order for this function to work the program must have been
compiled in order for the include files to become known.

Reopen Lists all the recently used project files and allows the user to open
them by selecting the appropriate file.

Find Text In
Project

Searches all files in a project for a given text string.

Print All Files All files in the project are printed. For this function to work the
program must have been compiled in order for the include files to
become known.

Include Dirs Allows the specification of each directory to be used to search for
include files for just this project. This information is saved in the
.PJT file.

Close Project Closes all files associated with the current project.

Edit Menu

Undo Undoes the last deletion.

Cut Moves the selected text from the file to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Copies the clipboard contents to the cursor location.

Copy
from File

Copies the contents of a file to the cursor location.

Paste
to File

Pastes the selected text to a file.

Find Searches for a specified string in the file.

Replace Replaces a specified string with a new string.

Next Performs another Find or Replace.

Find
matching

Highlights the matching { or). The editor will start counting the
open and closed braces and highlight the closing or opening

C Compiler Reference Manual

10

braces item when they match. Simply place the cursor on one of the
items and the matching one will be highlighted.

Find
matching
braces
extended

The text will be highlighted up to the corresponding } or).

Toggle
Bookmark

Sets a bookmark (0-9) at the cursor location.

Goto
Bookmark

Move the cursor to the specified bookmark (0-9).

Next
Window

Selects the next open file as the current file for editing.

Previous
Window

Selects the previous open file as the current file for editing.

Indent
Selection

The selected area of code will be properly indented.

Options Menu

Recall
Open Files

When selected PCW will always start with the same files open as
were open when it last shut down. When not selected PCW
always starts with no files open.

Editor
Properties

When clicked the editor brings up a new Editor Properties
Window which gives the user a number of options for setting up
the editor properties. Editor Properties window have three tabs
which are explained below:

General
Tab:

Window Settings:
The window Settings option allows the user to select the
scrollbars for the editor (horizontal and vertical)

Editor Options:
Syntax Highlighting

PCW IDE

11

When checked the editor highlights in color C keywords and
comments.

Auto Highlight brackets
When checked the editor highlights the matching brackets
automatically when the cursor is placed on one.

Auto Indent
When selected and the ENTER is pressed the cursor moves to
the next line under the first character in the previous line. When
not selected the ENTER always moves to the beginning of the
next line.

WordStar keys
When selected the editing keys are WordStar style. WordStar
commands will enable additional keystrokes recognized by the
editors. See EDITOR for more information.

TABS:
Tab size
Determines the number of characters between tab positions.
Tabs allow you to set the number of spaces equated by a tab and
whether or not the tabs are converted to spaces or left as tabs.

Keep Tabs
When selected the editor inserts a tab character (ASCII 9) when
the TAB key is pressed.

Insert Spaces
When selected and the TAB key is pressed, spaces are inserted
up to the next tab position.

 Display
 Tab:

Margin
Visible left Margin
When selected the left margin of the editor becomes visible.

Visible Right Margin
When selected the right margin of the editor becomes visible.

Left Margin Width
Width of the left margin.
Right Margin Width

C Compiler Reference Manual

12

Position of the right margin.

Editor Font
Selects the font of the editor.
Font Size:
Size of the editor font.

Font Style
Style of the editor font (Italic/Bold/Underline).

Color Tab: This tab allows the user to select the color for syntax highlighting.

Customize

This option gives a list of icons that can be added to the tool bar
for speedy access of functionalities of the debugger.

File
Formats

ALLOWS SELECTION OF THE OUTPUT FILE FORMATS.
DEBUG FILE OPTIONS
Microchip COD Standard PICmicro® MCU
RICE16 MAP Used only be older RICE16 S/W
To Extended COD COD file with advanced debug info

LIST FORMAT OPTIONS

OBJECT FILE OPTIONS

ERROR FILE OPTIONS

PCW IDE

13

Original Older Microchip standard
Include
Dirs

Allows the specification of each directory to be used to search for
include files by default for newly created projects. This has no
effect on projects already created (use Project|Include Dirs to
change those).

Debugger
/Programmer

Allows the specification of the device programmer to be used
when the PROGRAM CHIP tool is selected.

Global
Definitions

Allows the setting of #defines to be used in compiling. This is the
same as having some #defines at the top of your program. This
may be used for example to set debugging defines without
changing the code.

Compile
PCW Compile
Compiles the current project (name is in lower right) using the current compiler
(name is on the toolbar).

View Menu

C/ASM Opens the listing file in read only mode. The file must have

been compiled to view the list file. If open, this file will be
updated after each compile. The listing file shows each C
source line and the associated assembly code generated for
the line.

For Example:
 ……………delay_ms(3);
 0F2: MOVLW 05
 0F3: MOVWF 08
 0F4: DESCZ 08,F
 0F5: GOTO 0F4
 …………….while input(pin_0));
 0F6: BSF 0B,3

C Compiler Reference Manual

14

Symbol Map Opens the symbol file in read only mode. The file must have

been compiled to view the symbol file. If open, this file will
be updated after each compile. The symbol map shows each
register location and what program variables are saved in
each location.

Displays the RAM memory map for the program last
compiled. The map indicates the usage of each RAM
location. Some locations have multiple definitions since
RAM is reused depending on the current procedure being
executed.

FOR EXAMPLE:
 08 @SCRATCH
 09 @SCRATCH
 0A TRIS_A
 0B TRIS_B
 0C MAIN.SCALE
 0D MAIN.TIME
 0E GET_SCALE.SCALE
 0E PUTHEX.N
 0E MAIN.@SCRATCH

Call Tree Opens the tree file in read only mode. The file must have
been compiled to view the tree file. If open, this file will be
updated after each compile. The call tree shows each
function and what functions it calls along with the ROM and
RAM usage for each.

A (inline) will appear after inline procedures that begin with
@. After the procedure name is a number of the form s/n
where s is the page number of the procedure and n is the
number is locations of code storage is required. If s is ?,
then this was the last procedure attempted when the
compiler ran out of ROM space. RAM=xx indicates the total
RAM required for the function.

FOR EXAMPLE:
 Main 0/30
 INIT 0/6
 WAIT_FOR_HOST 0/23 (Inline)
 DELAY_US 0/12
 SEND_DATA 0/65

PCW IDE

15

Statistics Opens the stats file in read only mode. The file must have

been compiled to view the stats file. If open, this file will be
updated after each compile. The statistics file shows each
function, the ROM and RAM usage by file, segment and
name.

Data Sheet This tool will bring up Acrobat Reader with the manufacture
data sheet for the selected part. If data sheets were not
copied to disk, then the CCS CD ROM or a manufacture CD
ROM must be inserted.

Binary file Opens a binary file in read only mode. The file is shown in
HEX and ASCII.

COD Debug file Opens a debug file in read only mode. The file is shown in
an interpreted form.

Valid Fuses Shows a list of all valid keywords for the #fuses directive for
this device.

Valid Interrupts Shows a list of all valid keywords for the #int_xxxx directive
and enable/disable _interrupts for this device.

Tools Menu

Device Editor This tool allows the essential characteristics for each

supported processor to be specified. This tool edits a
database used by the compiler to control the compilation.
CCS maintains this database (Devices.dat) however users
may want to add new devices or change the entries for a
device for a special application. Be aware if the database is
changed and then the software is updated, the changes will
be lost. Save your DEVICES.DAT file during an update to
prevent this.

Device Selector This tool uses the device database to allow a parametric
selection of devices. By selecting key characteristics the tool
displays all eligible devices.

C Compiler Reference Manual

16

File Compare Compares two files. When source or text file is selected,
then a normal line by line compare is done. When list file is
selected the compare may be set to ignore RAM and/or ROM
addresses to make the comparison more meaningful. For
example if an asm line was added at the beginning of the
program a normal compare would flag every line as different.
 By ignoring ROM addresses then only the extra line is
flagged as changed. Two output formats are available. One
for display and one for files or printing.

Numeric
Converter

A conversion tool to convert between decimal, hex and float.

Serial
Port Monitor

An easy to use tool to connect to a serial port. This tool is
convenient to communicate with a target program over an
RS232 link. Data is shown as ASCII characters and as raw
hex.

Disassembler This tool will take as input a HEX file and will output ASM.
The ASM may be in a form that can be used as inline ASM.

This command will take a HEX file and generate an assembly
file so that selected sections can be extracted and inserted
into your C programs as inline assembly. Options will allow
the selection of the assembly format.

• 12 or 14 bit opcodes
• Address, C, MC ASM labels
• Hex or Binary
• Simple, ASM, C numbers

Extract
Cal Data

This tool will take as input a HEX file and will extract the
calibration data to a C include file. This may be used to
maintain calibration data for a UV erasable part. By including
the include file in a program the calibration data will be
restored after re-burning the part.

Program Chip This simply invokes device programmer software with the
output file as specified in the Compile\Options window. This
command will invoke the device programmer software of your
choice. Use the compile options to establish the command
line.

PCW IDE

17

MPLAB Invokes MPLAB with the current project. The project is

closed so MPLAB may modify the files if needed. When
MPLAB is invoked this way PCW stays minimized until
MPLAB terminates and then the project is reloaded.

Internet These options invoke your WWW browser with the requested
CCS Internet page:

View recent
changes

Shows version numbers and changes for
the last couple of months.

e-mail
technical
support

Starts your e-mail program with CCS
technical support as the To: address.

Download
updates

Goes to the CCS download page. Be sure
to have your reference number ready.

Data Sheets A list of various manufacture data sheets for
devices CCS has device drivers for (such as
EEPROMs, A/D converters, RTC...)

Help Menu

About Shows the version of the IDE and each installed compiler.

Contents The help file table of contents.

Index The help file index.

Keyword at cursor Does an index search for the keyword at the cursor location.

Press F1 to use this feature.

F12 Bring up help index

Shift F12 Bring up editor help

C Compiler Reference Manual

18

PCW Editor Keys

CURSOR MOVEMENT
Left Arrow Move cursor one character to the left
Right Arrow Move cursor one character to the right
Up Arrow Move cursor one line up
Down Arrow Move cursor one line down
Ctrl Left Arrow Move cursor one word to the left
Ctrl Right Arrow Move cursor one word to the right
Home Move cursor to start of line
End Move cursor to end of line
Ctrl PgUp Move cursor to top of window
Ctrl PgDn Move cursor to bottom of window
PgUp Move cursor to previous page
PgDn Move cursor to next page
Ctrl Home Move cursor to beginning of file
Ctrl End Move cursor to end of file
Ctrl S Move cursor one character to the left
Ctrl D Move cursor one character to the right
Ctrl E Move cursor one line up
Ctrl X ** Move cursor one line down
Ctrl A Move cursor one word to the left
Ctrl F Move cursor one word to the right
Ctrl Q S Move cursor to top of window
Ctrl Q D Move cursor to bottom of window
Ctrl R Move cursor to beginning of file
Ctrl C * Move cursor to end of file
Shift ~ Where ~ is any of the above: Extend selected

area as cursor moves

PCW IDE

19

EDITING COMMANDS
F4 Select next text with matching () or {}
Ctrl # Goto bookmark # 0-9
Shift Ctrl # Set bookmark # 0-9
Ctrl Q # Goto bookmark # 0-9
Ctrl K # Set bookmark # 0-9
Ctrl W Scroll up
Ctrl Z * Scroll down
Del Delete the following character
BkSp Delete the previous character
Shift BkSp Delete the previous character
Ins Toggle Insert/Overwrite mode
Ctrl Z ** Undo last operation
Shift Ctrl Z Redo last undo
Alt BkSp Restore to original contents
Ctrl Enter Insert new line
Shift Del Cut selected text from file
Ctrl Ins Copy selected text
Shift Ins Paste
Tab Insert tab or spaces
Ctrl Tab Insert tab or spaces
Ctrl P ~ Insert control character ~ in text
Ctrl G Delete the following character
Ctrl T Delete next word
Ctrl H Delete the previous character
Ctrl Y Delete line
Ctrl Q Y Delete to end of line
Ctrl Q L Restore to original contents
Ctrl X ** Cut selected text from file
Ctrl C ** Copy selected text
Ctrl V Paste
Ctrl K R Read file at cursor location
Ctrl K W Write selected text to file
Ctrl-F ** Find text
Ctrl-R ** Replace text
F3 Repeat last find/replace

* Only when WordStar mode selected
** Only when WordStar mode is not selected

C Compiler Reference Manual

20

Project Wizard

The new project wizard makes starting a new project easier.

After starting the Wizard you are prompted for the name for your new main c file.
This file will be created along with a corresponding .h file.

The tabbed notebook that is displayed allows the selection of various project
parameters. For example:

• General Tab -> Select the device and clock speed
• Communications tab --> Select RS232 ports
• I/O Pins tab --> Select you own names for the various pins

When any tab is selected you may click on the blue square in the lower right and
the wizard will show you what code is generated as a result of your selections in
that screen.

After clicking OK all the code is generated and the files are opened in the PCW
editor

This command will bring up a number of fill-in-the-blank forms about your new
project. RS232 I/O and 12C characteristics, timer options, interrupts used, A/D
options, drivers needed and pin names all may be specified in the forms. When
drivers are selected, the tool will select required pins and pins that can be
combined will be. The user may edit the final pins selections. After all selections
are made an initial .c and .h files are created with #defines, #includes and
initialization commands require for your project. This is a fast way to start a new
project. Once the files are created you cannot return to the menus to make
further changes.

21

CCS Debugger

Debugger - Overview

The PCW IDE comes with a built in debugger. The debugger is started via the
Debug|Enable menu selection. This section contains the following topics:

• Debug Menu
• Configure
• Control
• Watches
• Breaks
• RAM
• ROM
• Data EEPROM
• Stack
• Eval
• Log
• Monitor
• Peripherals
• Snapshot
• Enable/Disable

Debugger - Menu

This menu contains all the debugger options if the ICD is connected to the PC
and the prototype board for debugging the C program.

Debugger - Configure

The configure tab allows a selection of what hardware the debugger connects to.
Other configuration options vary depending on the hardware debugger in use.

The configure tab also allows manually reloading the target with your code.

If the debugger window is open and the “Reload target after every compile” box
is selected every time the program is compiled the program is downloaded into
the target.

C Compiler Reference Manual

22

A debugger profile contains all the selections in all the debugger tabs such as the
variables being watched, the debugger window position and size and the
breakpoints set. Profiles may be saved into files and loaded from the configure
tab. The last profile file saved or loaded is also saved in the projects .PJT file for
use the next time the debugger is started for that project.

SPECIAL NOTES FOR ICD USERS:
When using an ICD unit the CCS firmware must be installed in the ICD. To
install the firmware click on “Configure Hardware” then click on the center top
button to load ICD firmware.

Debugger - Control

The reset button puts the target into a reset condition. Note that in the source file
windows, Listing window and ROM window the current program counter line is
highlighted in yellow. This is the next line to execute.

The Go button starts the program running. While running none of the debugger
windows are updated with current information. The program stops when a break
condition is reached or the STOP button is clicked.

The STEP button will execute one C line if the source file is the active editor tab
and one assembly line if the list file is the active editor tab. STEP OVER works
like STEP except if the line is a call to another function then the whole function is
executed with one STEP OVER.

THE GO TO button will execute until the line the editor cursor is on is reached.

Debugger- Enable/Disable

This option enables/disables the debugger if it is not already in that state. The
menu option automatically changes to the other one. Shows or hides the PCW
debugger IDE as required.

CCS Debugger

23

Debugger - Watches

Click the + icon when the watch tab is selected to enter a new expression to
watch. The helper window that pops up will allow you to find identifiers in your
program to watch. Normal C expressions may be watched like:
X
X+Y
BUFFER[X]
BUUFER[X].NAME

Note that where the editor cursor is in the source file at the time you enter the watch
will affect how the expression is evaluated. For example consider you have two
functions F1 and F2 and you simply enter I as a watch expression. The I that you get
will depend on what function the cursor is in. You can proceed any variable with a
function name and period to exactly specify the variable (like: F1.I).

Debugger - Breaks

To set a breakpoint move the editor cursor to a source or list file line. Then
select the break tab in the debugger and click the + icon.

Note that the breaks work differently for different hardware units. For example on
a PIC16 using an ICD, you can only have one breakpoint and the processor
executes the line (assembly line) the break is set on before stopping.

Debugger - RAM

The debugger RAM tab shows the target RAM. Red numbers indicate locations
that changed since the last time the program stopped. Some locations are
blacked out that either do not represent a physical register or are not available
during debugging. To change a RAM location double click the value to change.
All numbers are in hex.

C Compiler Reference Manual

24

Debugger - ROM

The ROM tab shows the contents of the target program memory both in hex and
disassembled. This data is initially from the HEX file and is not refreshed from
the target unless the user requests it. To reload from the target right click in the
window.

Debugger -Data EEPROM

The debugger Data EEPROM tab shows the target Data EEPROM. Red
numbers indicate locations that changed since the last time the program
stopped. To change a Data EEPROM location double click the value to change.
All numbers are in hex.

Debugger - Stack

This tab shows the current stack. The last function called and all its parameters
are shown at the top of the list.

Note that the PIC16 ICD cannot read the stack. To view the stack, a #DEVICE
CCSICD=TRUE line must appear in your source file. The compiler then
generates extra code to allow the stack to be seen by the debugger.

Debugger - Eval

This tab allows the evaluation of a C expression. It is similar to the watch
capability except that more space is provided for the result (for large structures or
arrays).

The evaluation also allows calling a C function in the target. In this case you
must provide all the parameters. The result of the function is shown in the result
window. This capability is not available on all debugger platforms.

CCS Debugger

25

Debugger - Log

The log capability is a combination of the break, watch and snapshot. You
specify a break number and an expression to evaluate each time the break is
reached. The program is restarted after the expression is evaluated and the
result is logged in the log window. Multiple expressions may be specified by
separating them with semi-colons. The log window may be saved to a file. Each
expression result in the file is separated with a tab making it suitable for importing
into a spreadsheet program.

Debugger - Monitor

The monitor window shows data from the target and allows entry of data to be
sent to the target. This is done on the target like this:

#use RS232(DEBUGGER)
...
printf(“Test to run? “);
test=getc();

For the PIC16 ICD the B3 pin is used on the target to implement this capability.
The normal ICD cable is already set up correctly for this.

Debugger - Peripherals

This tab shows the state of the targets special function registers. This data is
organized by function. Select a function from the drop down list and the registers
associated with that function are shown. Below the registers is a listing of each
field in the registers with an interpretation of what the bit pattern means.

C Compiler Reference Manual

26

Debugger - Snapshot

Click on the camera icon to bring up the snapshot window. The snapshot
function allows the recording of the contents of part or all of the various debugger
windows. On the right hand side you may select what items you need to record.
The top right is a selection of where to record the data. The options are:

• Printer
• A new file
• Append to an existing file

In addition you can select when to do the snapshot:

• Now
• On every break
• On every single step

Furthermore you can click on the APPEND COMMENT button to add a comment
to be inserted into the file.

27

Pre-Processor
PRE-PROCESSOR

PRE-PROCESSOR COMMAND SUMMARY
STANDARD C DEVICE SPECIFICATION
#DEFINE ID STRING p. 35 #DEVICE CHIP p. 36
#ELSE p. 42 #ID NUMBER p. 41
#ENDIF p. 42 #ID "filename" p. 41
#ERROR p. 38 #ID CHECKSUM p. 41
#IF expr p. 42 #FUSES options p. 40
#IFDEF id p. 44 #TYPE type=type p. 60
#INCLUDE "FILENAME" p. 45 #SERIALIZE p. 57
#INCLUDE <FILENAME> p. 45 BUILT-IN LIBRARIES
#LIST p. 50 #USE DELAY CLOCK p. 62
#NOLIST p. 51 #USE FAST_IO p. 62
#PRAGMA cmd p. 55 #USE FIXED_IO p. 63
#UNDEF id p. 61 #USE I2C p. 63
 #USE RS232 p. 64
FUNCTION QUALIFIER #USE STANDARD_IO p. 67
#INLINE p. 46 MEMORY CONTROL
#INT_DEFAULT p. 48 #ASM p. 28
#INT_GLOBAL p. 49 #BIT id=const.const p. 32
#INT_xxx p. 46 #BIT id=id.const p. 32
#SEPARATE p. 59 #BYTE id=const p. 33
PRE-DEFINED IDENTIFIER #BYTE id=id p. 33
__DATE__ p. 35 #LOCATE id=const p. 50
__DEVICE__ p. 38 #ENDASM p. 28
__FILE__ p. 39 #RESERVE p. 56
__LINE__ p. 49 #ROM p. 56
__PCB __ p. 53 #ZERO_RAM p. 68
__PCM__ p. 54 #BUILD p. 32
__PCH__ p. 54 #FILL_ROM p. 39
__TIME__ p. 60 COMPILER CONTROL
 #CASE p. 34
 #OPT n p. 51
 #PRIORITY p. 55
 #ORG p. 52
 #IGNORE_WARNINGS p. 43

C Compiler Reference Manual

28

Pre-Processor Directives

Pre-processor directives all begin with a # and are followed by a specific
command. Syntax is dependent on the command. Many commands do not allow
other syntactical elements on the remainder of the line. A table of commands
and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides
a pre-processor directive that compilers will accept and ignore or act upon the
following data. This implementation will allow any pre-processor directives to
begin with #PRAGMA. To be compatible with other compilers, this may be used
before non-standard features.

Examples: Both of the following are valid
#INLINE
#PRAGMA INLINE

#ASM
#ENDASM

Syntax: #asm
 or
#asm ASIS
 code
 #endasm

Elements: code is a list of assembly language instructions

Purpose: The lines between the #ASM and #ENDASM are treated as
assembly code to be inserted. These may be used
anywhere an expression is allowed. The syntax is
described on the following page. The predefined variable
RETURN may be used to assign a return value to a
function from the assembly code. Be aware that any C
code after the #ENDASM and before the end of the function
may corrupt the value.

If the second form is used with ASIS then the compiler will
not do any automatic bank switching for variables that cannot
be accessed from the current bank. The assembly code is

Pre-Processor

29

used as-is. Without this option the assembly is augmented
so variables are always accessed correctly by adding bank
switching where needed.

Examples: int find_parity (int data) {

int count;
#asm
movlw 0x8
movwf count
movlw 0
loop:
xorwf data,w
rrf data,f
decfsz count,f
goto loop
movlw 1
awdwf count,f
movwf _return_
#endasm
}

Example Files: ex_glint.c

Also See: None

C Compiler Reference Manual

30

 12 BIT AND 14 BIT
ADDWF f,d ANDWF f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWF f,d
MOVF f,d MOVPHW
MOVPLW MOVWF f
NOP RLF f,d
RRF f,d SUBWF f,d
SWAPF f,d XORWF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
 14 BIT
 ADDLW k
 SUBLW k
 RETFIE
 RETURN

f may be a constant (file number) or a simple variable
d may be a constant (0 or 1) or W or F
f,b may be a file (as above) and a constant (0-7) or it may be just a bit

variable reference.
k may be a constant expression

 Note that all expressions and comments are in C like syntax.

Pre-Processor

31

PIC 18
ADDWF f,d ADDWFC f,d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSZ f,d DCFSNZ f,d INCF f,d
INFSNZ f,d IORWF f,d MOVF f,d
MOVFF fs,d MOVWF f MULWF f

NEGF f RLCF f,d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB f,d SUBWF f,d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f,b BSF f,b BTFSC f,b
BTFSS f,b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT

- DAW - GOTO n

NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE s RETLW k RETURN s
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *

TBLRD *+ TBLRD *- TBLRD +*
TBLWT * TBLWT *+ TBLWT *-
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

C Compiler Reference Manual

32

#BIT

Syntax: #bit id = x.y

Elements: id is a valid C identifier,
x is a constant or a C variable,
y is a constant 0-7.

Purpose: A new C variable (one bit) is created and is placed in
memory at byte x and bit y. This is useful to gain access in
C directly to a bit in the processors special function register
map. It may also be used to easily access a bit of a standard
C variable.

Examples: #bit T0IF = 0xb.2
...
T0IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result_odd = result.0
...
if (result_odd)

Example Files: ex_glint.c

Also See: #byte, #reserve, #locate

#BUILD

Syntax: #build(segment = address)

#build(segment = address, segment = address)
#build(segment = start:end)
#build(segment = start: end, segment = start: end)
#build(nosleep)

Elements: segment is one of the following memory segments
which may be assigned a location: MEMORY, RESET,
or INTERRUPT.

Pre-Processor

33

address is a ROM location memory address. Start and
end are used to specify a range in memory to be used.
Start is the first ROM location and end is the last ROM
location to be used.

Nosleep is used to prevent the compiler from inserting a
sleep at the end of main ()

Purpose: PIC18XXX devices with external ROM or PIC18XXX
devices with no internal ROM can direct the compiler to
utilize the ROM.

Examples: #build(memory=0x20000:0x2FFFF)
 //Assigns memory space
#build(reset=0x200,interrupt=0x208)
 //Assigns start location of
 //reset and interrupt vectors

#build(reset=0x200:0x207,
 interrupt=0x208:0x2ff)
 //Assign limited space for
 //reset and interrupt vectors.

Example Files: None

Also See: #locate, #reserve, #rom, #org

#BYTE

Syntax: #byte id = x

Elements: id is a valid C identifier,
x is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate
the variable at address x. In this case the variable type does
not change from the original definition. If the id is not known
a new C variable is created and placed at address x with the
type int (8 bit)

Warning: In both cases memory at x is not exclusive to this

C Compiler Reference Manual

34

variable. Other variables may be located at the same
location. In fact when x is a variable, then id and x share the
same memory location.

Examples: #byte status = 3
#byte b_port = 6

struct {
 short int r_w;
 short int c_d;
 int unused : 2;
 int data : 4; } a_port;
#byte a_port = 5
...
a_port.c_d = 1;

Example Files: ex_glint.c

Also See: #bit, #locate, #reserve

#CASE

Syntax: #case

Elements: None

Purpose: Will cause the compiler to be case sensitive. By default the
compiler is case insensitive.

Warning: Not all the CCS example programs, headers and
drivers have been tested with case sensitivity turned on.

Examples: #case

int STATUS;

void func() {
int status;
...
STATUS = status; // Copy local status to
 //global
}

Pre-Processor

35

Example Files: ex_cust.c

Also See: None

__DATE__

Syntax: __date__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with
the date of the compile in the form: "31-JAN-03"

Examples: printf("Software was compiled on ");
printf(__DATE__);

Example Files: None

Also See: None

#DEFINE

Syntax: #define id text
 or
#define id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, x,y and so on
are local preprocessor identifiers, and in this form there may
be one or more identifiers separated by commas.

Purpose: Used to provide a simple string replacement of the ID with
the given text from this point of the program and on.

In the second form (a C macro) the local identifiers are
matched up with similar identifiers in the text and they are
replaced with text passed to the macro where it is used.

C Compiler Reference Manual

36

If the text contains a string of the form #idx then the result
upon evaluation will be the parameter id concatenated with
the string x.

If the text contains a string of the form idx##idy then
parameter idx is concatenated with parameter idy forming a
new identifier.

Examples: #define BITS 8
a=a+BITS; //same as a=a+8;

#define hi(x) (x<<4)
a=hi(a); //same as a=(a<<4);

Example Files: ex_stwt.c, ex_macro.c

Also See: #undef, #ifdef, #ifndef

#DEVICE

Syntax: #device chip options

Elements: chip is the name of a specific processor (like: PIC16C74), To
get a current list of supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the
device. Valid options are:

*=5 Use 5 bit pointers (for all
parts)

*=8 Use 8 bit pointers (14 and
16 bit parts)

*=16 Use 16 bit pointers (for 14
bit parts)

Pre-Processor

37

ADC=x Where x is the number of
bits read_adc() should
return

ICD=TRUE

Generates code
compatible with
Microchips ICD
debugging hardware.

WRITE_EEPROM=ASYNC Prevents
WRITE_EEPROM from
hanging while writing is
taking place. When used,
do not write to EEPROM
from both ISR and
outside ISR.

HIGH_INTS=TRUE Use this option for
high/low priority interrupts
on the PIC®18.

Both chip and options are optional, so multiple #device lines
may be used to fully define the device. Be warned that a
#device with a chip identifier, will clear all previous #device
and #fuse settings.

Purpose: Defines the target processor. Every program must have
exactly one #device with a chip.

Examples: #device PIC16C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10

Example Files: ex_mxram.c, ex_icd.c, 16c74.h

Also See: read_adc()

C Compiler Reference Manual

38

__DEVICE__

Syntax: __device __

Elements: None

Purpose: This pre-processor identifier is defined by the compiler with
the base number of the current device (from a #device).
The base number is usually the number after the C in the
part number. For example the PIC16C622 has a base
number of 622.

Examples: #if __device__==71
SETUP_ADC_PORTS(ALL_DIGITAL);
#endif

Example Files: None

Also See: #device

#ERROR

Syntax: #error text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this
directive appears in the file. The text may include macros
that will be expanded for the display. This may be used to
see the macro expansion. The command may also be used
to alert the user to an invalid compile time situation.

Examples: #if BUFFER_SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,y)

Example Files: ex_psp.c

Also See: None

Pre-Processor

39

__FILE__

Syntax: __file__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with
the filename of the file being compiled.

Examples: if(index>MAX_ENTRIES)
 printf("Too many entries, source file: "
 __FILE__ " at line " __LINE__ "\r\n");

Example Files: assert.h

Also See: __line__

#FILL_ROM

Syntax: #fill_rom value

Elements: value is a constant 16-bit value

Purpose: This directive specifies the data to be used to fill unused

ROM locations.

Examples: #fill_rom 0x36

Example Files: None

Also See: #rom

C Compiler Reference Manual

40

#FUSES

Syntax: #fuse options

Elements: options vary depending on the device. A list of all valid
options has been put at the top of each devices .h file in a
comment for reference. The PCW device edit utility can
modify a particular devices fuses. The PCW pull down menu
VIEW | Valid fuses will show all fuses with their descriptions.

Some common options are:
• LP, XT, HS, RC
• WDT, NOWDT
• PROTECT, NOPROTECT
• PUT, NOPUT (Power Up Timer)
• BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part
when it is programmed. This directive does not affect the
compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR
option. SWAP has the special function of swapping (from
the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some
device programmers.

Examples: #fuses HS,NOWDT

Example Files: ex_sqw.c

Also See: None

Pre-Processor

41

#HEXCOMMENT()

Syntax: #HEXCOMMENT

Elements: None

Purpose: Puts a comment in the hex file Puts a comment in the hex file

Examples: #HEXCOMMENT Version 3.1 - only use 876A chips

Example Files: None

Also See: None

#ID

Syntax: #ID number 16
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Number16 is a 16 bit number, number is a 4 bit number,
filename is any valid PC filename and checksum is a
keyword.

Purpose: This directive defines the ID word to be programmed into the
part. This directive does not affect the compilation but the
information is put in the output file.

The first syntax will take a 16-bit number and put one nibble
in each of the four ID words in the traditional manner. The
second syntax specifies the exact value to be used in each
of the four ID words.

When a filename is specified the ID is read from the file. The
format must be simple text with a CR/LF at the end. The
keyword CHECKSUM indicates the device checksum should
be saved as the ID.

C Compiler Reference Manual

42

Examples: #id 0x1234
#id "serial.num"
#id CHECKSUM

Example Files: ex_cust.c

Also See: None

#IF expr
#ELSE
#ELIF
#ENDIF

Syntax: #if expr
 code
#elif expr //Optional, any number may be used
 code
#else //Optional
 code
#endif

Elements: expr is an expression with constants, standard operators
and/or preprocessor identifiers. Code is any standard c
source code.

Purpose: The pre-processor evaluates the constant expression and if it
is non-zero will process the lines up to the optional #ELSE or
the #ENDIF.

Note: you may NOT use C variables in the #IF. Only
preprocessor identifiers created via #define can be used.

The preprocessor expression DEFINED(id) may be used to
return 1 if the id is defined and 0 if it is not.

Examples: #if MAX_VALUE > 255
long value;
#else
int value;
#endif

Pre-Processor

43

Example Files: ex_extee.c

Also See: #ifdef, #ifndef

#IGNORE_WARNINGS

Syntax: #ignore_warnings ALL

#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements: warnings is one or more warning numbers separated by
commas

Purpose: This function will suppress warning messages from the
compiler. ALL indicates no warning will be generated.
 NONE indicates all warnings will be generated. If numbers
are listed then those warnings are suppressed.

Examples: #ignore_warnings 203
while(TRUE) {
#ignore_warnings NONE

Example Files: None

Also See: Warning messages

C Compiler Reference Manual

44

#IFDEF
#IFNDEF
#ELSE
#ELIF
#ENDIF

Syntax: #ifdef id
 code
#elif
 code
#else
 code
#endif

#ifndef id
 code
#elif
 code
#else
 code
#endif

Elements: id is a preprocessor identifier, code is valid C source code.

Purpose: This directive acts much like the #IF except that the
preprocessor simply checks to see if the specified ID is
known to the preprocessor (created with a #DEFINE).
#IFDEF checks to see if defined and #IFNDEF checks to see
if it is not defined.

Examples: #define debug // Comment line out for no debug

...
#ifdef DEBUG
printf("debug point a");
#endif

Example Files: ex_sqw.c

Also See: #if

Pre-Processor

45

#INCLUDE

Syntax: #include <filename>
 or
#include "filename"

Elements: filename is a valid PC filename. It may include normal drive
and path information. A file with the extension ".encrypted"
is a valid PC file. The standard compiler #include directive
will accept files with this extension and decrypt them as they
are read. This allows include files to be distributed without
releasing the source code.

Purpose: Text from the specified file is used at this point of the
compilation. If a full path is not specified the compiler will use
the list of directories specified for the project to search for the
file. If the filename is in "" then the directory with the main
source file is searched first. If the filename is in <> then the
directory with the main source file is searched last.

Examples: #include <16C54.H>

#include<C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqw.c

Also See: PCW IDE

C Compiler Reference Manual

46

#INLINE

Syntax: #inline

Elements: None

Purpose: Tells the compiler that the function immediately following the
directive is to be implemented INLINE. This will cause a
duplicate copy of the code to be placed everywhere the
function is called. This is useful to save stack space and to
increase speed. Without this directive the compiler will
decide when it is best to make procedures INLINE.

Examples: #inline
swapbyte(int &a, int &b) {
 int t;
 t=a;
 a=b;
 b=t;
}

Example Files: ex_cust.c

Also See: #separate

#INT_xxxx

Syntax: #INT_AD Analog to digital conversion complete
#INT_ADOF Analog to digital conversion timeout
#INT_BUSCOL Bus collision
#INT_BUTTON Pushbutton
#INT_CCP1 Capture or Compare on unit 1
#INT_CCP2 Capture or Compare on unit 2
#INT_COMP Comparator detect
#INT_EEPROM write complete
#INT_EXT External interrupt
#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2

Pre-Processor

47

#INT_I2C I2C interrupt (only on 14000)
#INT_LCD LCD activity
#INT_LOWVOLT Low voltage detected
#INT_PSP Parallel Slave Port data in
#INT_RB Port B any change on B4-B7
#INT_RC Port C any change on C4-C7
#INT_RDA RS232 receive data available
#INT_RTCC Timer 0 (RTCC) overflow
#INT_SSP SPI or I2C activity
#INT_TBE RS232 transmit buffer empty
#INT_TIMER0 Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMER3 Timer 3 overflow
Note many more #INT_ options are available on specific
chips. Check the devices .h file for a full list for a given chip.

Elements: None

Purpose: These directives specify the following function is an interrupt
function. Interrupt functions may not have any parameters.
Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW
use the pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when
the interrupt is detected. It will generate code to save and
restore the machine state, and will clear the interrupt flag.
To prevent the flag from being cleared add NOCLEAR after
the #INT_xxxx. The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the
interrupt along with the ENABLE_INTERRUPTS(GLOBAL) to
enable interrupts.

The keyword FAST may be used with the PCH compiler to
mark an interrupt high priority. A fast interrupt can interrupt
another interrupt handler. The compiler does no
save/restore in a fast ISR. You should do as little as
possible and save any registers that need to be saved on
your own. See #DEVICE for information on building with
high priority interrupts.

C Compiler Reference Manual

48

Examples: #int_ad

adc_handler() {
 adc_active=FALSE;
}

#int_rtcc noclear
isr() {
 ...
}

Example Files: See ex_sisr.c and ex_stwt.c for full example programs.

Also See: enable_interrupts(), disable_interrupts(), #int_default,
#int_global

#INT_DEFAULT

Syntax: #int_default

Elements: None

Purpose: The following function will be called if the PIC® triggers an
interrupt and none of the interrupt flags are set. If an
interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

Examples: #int_default
default_isr() {
 printf("Unexplained interrupt\r\n");
}

Example Files: None

Also See: #INT_xxxx, #INT_global

Pre-Processor

49

#INT_GLOBAL

Syntax: #int_global

Elements: None

Purpose: This directive causes the following function to replace the
compiler interrupt dispatcher. The function is normally not
required and should be used with great caution. When used,
the compiler does not generate start-up code or clean-up
code, and does not save the registers.

Examples: #int_global
isr() { // Will be located at location 4
 #asm
 bsf isr_flag
 retfie
 #endasm
}

Example Files: ex_glint.c

Also See: #int_xxxx

__LINE__

Syntax: __line__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with

line number of the file being compiled.

Examples: if(index>MAX_ENTRIES)
 printf("Too many entries, source file: "
 __FILE__" at line " __LINE__ "\r\n");

C Compiler Reference Manual

50

Example Files: assert.h

Also See: __file__

#LIST

Syntax: #list

Elements: None

Purpose: #List begins inserting or resumes inserting source lines into
the .LST file after a #NOLIST.

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #nolist

#LOCATE

Syntax: #locate id=x

Elements: id is a C variable,
x is a constant memory address

Purpose: #LOCATE works like #BYTE however in addition it prevents C
from using the area.

Examples: //This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x50

Pre-Processor

51

Example Files: ex_glint.c

Also See: #byte, #bit, #reserve

#NOLIST

Syntax: #nolist

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #LIST

#OPT

Syntax: #OPT n

Elements: All Devices: n is the optimization level 0-9
PIC18XXX: n is the optimization level 0-11

Purpose: The optimization level is set with this directive. This setting
applies to the entire program and may appear anywhere in
the file. Optimization level 5 will set the level to be the same
as the PCB, PCM, and PCH standalone compilers. The PCW
default is 9 for full optimization. PIC18XXX devices may
utilize levels 10 and 11 for extended optimization. Level 9
may be used to set a PCW compile to look exactly like a
PCM compile for example. It may also be used if an
optimization error is suspected to reduce optimization.

C Compiler Reference Manual

52

Examples: #opt 5

Example Files: None

Also See: None

#ORG

Syntax: #org start, end
 or
#org segment
 or
#org start, end {}
 or
#org start, end auto=0
#ORG start,end DEFAULT
 or
#ORG DEFAULT

Elements: start is the first ROM location (word address) to use, end is
the last ROM location, segment is the start ROM location
from a previous #org

Purpose: This directive will fix the following function or constant
declaration into a specific ROM area. End may be omitted if
a segment was previously defined if you only want to add
another function to the segment.

Follow the ORG with a {} to only reserve the area with
nothing inserted by the compiler.

The RAM for a ORG'ed function may be reset to low memory
so the local variables and scratch variables are placed in low
memory. This should only be used if the ORG'ed function will
not return to the caller. The RAM used will overlap the RAM
of the main program. Add a AUTO=0 at the end of the
#ORG line.

Pre-Processor

53

If the keyword DEFAULT is used then this address range is
used for all functions user and compiler generated from this
point in the file until a #ORG DEFAULT is encountered (no
address range). If a compiler function is called from the
generated code while DEFAULT is in effect the compiler
generates a new version of the function within the specified
address range.

Examples: #ORG 0x1E00, 0x1FFF
MyFunc() {
//This function located at 1E00
}

#ORG 0x1E00
Anotherfunc(){
// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1C00, 0x1C0F
CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1C00
//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, 0x1FF0
Void loader (){
.
.
.
}

Example Files: loader.c

Also See: #ROM

__PCB__

Syntax: __pcb __

Elements: None

C Compiler Reference Manual

54

Purpose: The PCB compiler defines this pre-processor identifier. It

may be used to determine if the PCB compiler is doing the
compilation.

Examples: #ifdef __pcb__
#device PIC16c54
#endif

Example Files: ex_sqw.c

Also See: __PCM__, __PCH__

__PCM__

Syntax: __pcm __
Elements: None

Purpose: The PCM compiler defines this pre-processor identifier. It

may be used to determine if the PCM compiler is doing the
compilation.

Examples: #ifdef __pcm__
#device PIC16c71
#endif

Example Files: ex_sqw.c
Also See: __PCB__, __PCH__

__PCH __

Syntax: __pch __

Elements: None

Purpose: The PCH compiler defines this pre-processor identifier. It
may be used to determine if the PCH compiler is doing the
compilation.

Pre-Processor

55

Examples: #ifdef __PCH __
#device PIC18C452
#endif

Example Files: ex_sqw.c

Also See: __pcb__, __pcm__

#PRAGMA

Syntax: #pragma cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C
compilers. This compiler will accept this directive before any
other pre-processor command. In no case does this
compiler require this directive.

Examples: #pragma device PIC16C54

Example Files: ex_cust.c

Also See: None

#PRIORITY

Syntax: #priority ints

Elements: ints is a list of one or more interrupts separated by commas.

Purpose: The priority directive may be used to set the interrupt priority.
The highest priority items are first in the list. If an interrupt is
active it is never interrupted. If two interrupts occur at
around the same time then the higher one in this list will be
serviced first.

C Compiler Reference Manual

56

Examples: #priority rtcc,rb

Example Files: None

Also See: #int_xxxx

#RESERVE

Syntax: #reserve address
 or
#reserve address, address, address
 or
#reserve start:end

Elements: address is a RAM address, start is the first address and
end is the last address

Purpose: This directive allows RAM locations to be reserved from use
by the compiler. #RESERVE must appear after the
#DEVICE otherwise it will have no effect.

Examples: #DEVICE PIC16C74
#RESERVE 0x60:0X6f

Example Files: ex_cust.c

Also See: #org

#ROM

Syntax: #rom address = {list}

Elements: address is a ROM word address, list is a list of words
separated by commas

Pre-Processor

57

Purpose: Allows the insertion of data into the .HEX file. In particular,

this may be used to program the '84 data EEPROM, as
shown in the following example.

Note that if the #ROM address is inside the program memory
space, the directive creates a segment for the data, resulting
in an error if a #ORG is over the same area. The #ROM
data will also be counted as used program memory space.

Examples: #rom 0x2100={1,2,3,4,5,6,7,8}

Example Files: None

Also See: #org

#SERIALIZE

Syntax: #serialize(id=xxx, next=”x” | file=" filename.txt " |

listfile=" filename.txt," prompt="text",
log="filename.txt")
 -Or-
#serialize(dataee=x, binary=x, next=”x” |
file="filename.txt" | listfile=" filename.txt ", prompt=" text ",
log=" filename.txt ")

Elements: id=xxx Specify a C CONST identifier, may be
int8,int16,int32 or char array

Use in place of id parameter, when storing serial number
to EEPROM:
dataee=x The address x is the start address in the data
EEPROM.

binary=x The integer x is the number of bytes to
be written to address specified.
 -or-
string=x The integer x is the number of bytes to be
written to address specified.

C Compiler Reference Manual

58

Use only one of the next three options:
file=”filename.txt” The file x is used to read the
initial serial number from, and this file is updated by the
ICD programmer. It is assumed this is a one line file with
the serial number. The programmer will
increment the serial number.

listfile=”filename.txt” The file x is used to read the
initial serial number from, and this file is updated by the
ICD programmer. It is assumed this is a file one serial
number per line. The programmer will read the first line
then delete that line from the file. next=”x” The serial
number X is used for the first load, then the hex file is
updated to increment x by one.

prompt=”text” If specified the user will be prompted for
a serial number on each load. If used with one of the
above three options then the default value the user may
use is picked according to the above rules.

log=xxx A file may optionally be specified to keep a
log of the date, time, hex file name and serial number
each time the part is programmed. If no id=xxx is
specified then this may be used as a simple log of all
loads of the hex file.

Purpose: Assists in making serial numbers easier to implement
when working with CCS ICD units. Comments are
inserted into the hex file that the ICD software interprets.

Examples: //Prompt user for serial number to be placed
//at address of serialNumA
//Default serial number = 200
int8 const serialNumA=100;
#serialize(id=serialNumA,next="200",prompt="Enter
the serial number")

//Adds serial number log in seriallog.txt
#serialize(id=serialNumA,next="200",prompt="Enter
the serial number", log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize(id=serialNumA,listfile=”serials.txt”)

Pre-Processor

59

//Place serial number at EEPROM address 0,
reserving 1 byte
#serialize(dataee=0,binary=1,next="45",prompt="Put
in Serial number")

//Place string serial number at EEPROM address 0,
reserving 2 bytes
#serialize(dataee=0,
string=2,next="AB",prompt="Put in Serial number")

Example Files: None

Also See: None

#SEPARATE

Syntax: #separate

Elements: None

Purpose: Tells the compiler that the procedure IMMEDIATELY
following the directive is to be implemented SEPARATELY.
This is useful to prevent the compiler from automatically
making a procedure INLINE. This will save ROM space but it
does use more stack space. The compiler will make all
procedures marked SEPARATE, separate, as requested,
even if there is not enough stack space to execute.

Examples: #separate
swapbyte (int *a, int *b) {
int t;
 t=*a;
 *a=*b;
 *b=t;
}

Example Files: ex_cust.c

Also See: #inline

C Compiler Reference Manual

60

__TIME __

Syntax: __time__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with
the time of the compile in the form: "hh:mm:ss"

Examples: printf("Software was compiled on ");
printf(__TIME__);

Example Files: None

Also See: None

#TYPE

Syntax: #type standard-type=size

Elements: standard-type is one of the C keywords short, int, long, or a
user defined size
size is 1,8,16 or 32

Purpose: By default the compiler treats SHORT as one bit, INT as 8
bits, and LONG as 16 bits.
 If default is used, the size must be defined before the
#TYPE declaration and allows
the default address space for a block of code to be specified.
An example of this
can be found in the Examples section below.

Pre-Processor

61

Examples: typemod <,,,0x100,0x1ff>user_ram_block;

#type default=user_ram_block // all variable
 // declarations in
 // this area will be in
 // 0x100-0x1FF

#type default= // restores memory
 // allocation
 // back to normal

Example Files: ex_cust.c

Also See: None

#UNDEF

Syntax: #undef id

Elements: id is a pre-processor id defined via #define

Purpose: The specified pre-processor ID will no longer have meaning
to the pre-processor.

Examples: #if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

Example Files: None

Also See: #define

C Compiler Reference Manual

62

#USE DELAY

Syntax: #use delay (clock=speed)
 or
#use delay(clock=speed, restart_wdt)

Elements: speed is a constant 1-100000000 (1 hz to 100 mhz)

Purpose: Tells the compiler the speed of the processor and enables
the use of the built-in functions: delay_ms() and delay_us().
Speed is in cycles per second. An optional restart_WDT
may be used to cause the compiler to restart the WDT while
delaying.

Examples: #use delay (clock=20000000)
#use delay (clock=32000, RESTART_WDT)

Example Files: ex_sqw.c

Also See: delay_ms(), delay_us()

#USE FAST_IO

Syntax: #use fast_io (port)
Elements: port is A-G

Purpose: Affects how the compiler will generate code for input and

output instructions that follow. This directive takes effect
until another #use xxxx_IO directive is encountered. The
fast method of doing I/O will cause the compiler to perform
I/O without programming of the direction register. The user
must ensure the direction register is set correctly via
set_tris_X().

Examples: #use fast_io(A)

Example Files: ex_cust.c
Also See: #use fixed_io, #use standard_io, set_tris_X()

Pre-Processor

63

#USE FIXED_IO

Syntax: #use fixed_io (port_outputs=pin, pin?)

Elements: port is A-G, pin is one of the pin constants defined in the
devices .h file.

Purpose: This directive affects how the compiler will generate code for
input and output instructions that follow. This directive takes
effect until another #use xxx_IO directive is encountered.
The fixed method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output every
time it is used. The pins are programmed according to the
information in this directive (not the operations actually
performed). This saves a byte of RAM used in standard I/O.

Examples: #use fixed_io(a_outputs=PIN_A2, PIN_A3)

Example Files: None

Also See: #use fast_io, #use standard_io

#USE I2C

Syntax: #use i2c (options)

Elements: Options are separated by commas and may be:
MASTER Set the master mode
SLAVE Set the slave mode
SCL=pin Specifies the SCL pin (pin is a bit

address)
SDA=pin Specifies the SDA pin
ADDRESS=nn Specifies the slave mode address
FAST Use the fast I2C specification
SLOW Use the slow I2C specification
RESTART_WDT Restart the WDT while waiting in

I2C_READ

C Compiler Reference Manual

64

FORCE_HW Use hardware I2C functions.
NOFLOAT_HIGH Does not allow signals to float

high, signals are driven from low
to high

SMBUS Bus used is not I2C bus, but very
similar

Purpose: The I2C library contains functions to implement an I2C bus.
The #USE I2C remains in effect for the I2C_START,
I2C_STOP, I2C_READ, I2C_WRITE and I2C_POLL
functions until another USE I2C is encountered. Software
functions are generated unless the FORCE_HW is
specified. The SLAVE mode should only be used with the
built-in SSP.

Examples: #use I2C(master, sda=PIN_B0, scl=PIN_B1)

#use I2C(slave,sda=PIN_C4,scl=PIN_C3
 address=0xa0,FORCE_HW)

Example Files: ex_extee.c with 2464.c

Also See: i2c_read(), i2c_write()

#USE RS232

Syntax: #use rs232 (options)

Elements: Options are separated by commas and may be:
STREAM=id Associates a stream identifier

with this RS232 port. The
identifier may then be used in

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

Pre-Processor

65

FORCE_SW Will generate software serial
I/O routines even when the
UART pins are specified.

BRGH1OK Allow bad baud rates on chips
that have baud rate problems.

ENABLE=pin

The specified pin will be high
during transmit. This may be
used to enable 485 transmit.

DEBUGGER Indicates this stream is used
to send/receive data though a
CCS ICD unit. The default pin
used in B3, use XMIT= and
RCV= to change the pin used.
 Both should be the same pin.

RESTART_WDT Will cause GETC() to clear
the WDT as it waits for a
character.

INVERT Invert the polarity of the serial
pins (normally not needed
when level converter, such as
the MAX232). May not be
used with the internal UART.

PARITY=X Where x is N, E, or O.
BITS =X Where x is 5-9 (5-7 may not

be used with the SCI).
FLOAT_HIGH The line is not driven high.

 This is used for open
collector outputs. Bit 6 in
RS232_ERRORS is set if the
pin is not high at the end of
the bit time.

ERRORS Used to cause the compiler to
keep receive errors in the
variable RS232_ERRORS
and to reset errors when they
occur.

C Compiler Reference Manual

66

SAMPLE_EARLY A getc() normally samples
data in the middle of a bit
time. This option causes the
sample to be at the start of a
bit time. May not be used with
the UART.

RETURN=pin

For FLOAT_HIGH and
MULTI_MASTER this is the
pin used to read the signal
back. The default for
FLOAT_HIGH is the XMIT pin
and for MULTI_MASTER the
RCV pin.

MULTI_MASTER Uses the RETURN pin to
determine if another master
on the bus is transmitting at
the same time. If a collision is
detected bit 6 is set in
RS232_ERRORS and all
future PUTC's are ignored
until bit 6 is cleared. The
signal is checked at the start
and end of a bit time. May not
be used with the UART.

LONG_DATA Makes getc() return an int16
and putc accept an int16.
 This is for 9 bit data formats.

DISABLE_INTS Will cause interrupts to be
disabled when the routines
get or put a character. This
prevents character distortion
for software implemented I/O
and prevents interaction
between I/O in interrupt
handlers and the main
program when using the
UART.

Pre-Processor

67

Purpose: This directive tells the compiler the baud rate and pins used for

serial I/O. This directive takes effect until another RS232
directive is encountered. The #USE DELAY directive must
appear before this directive can be used. This directive enables
use of built-in functions such as GETC, PUTC, and PRINTF.

When using parts with built-in SCI and the SCI pins are
specified, the SCI will be used. If a baud rate cannot be
achieved within 3% of the desired value using the current clock
rate, an error will be generated. The definition of the
RS232_ERRORS is as follows:

No UART:
• Bit 7 is 9th bit for 9 bit data mode (get and put).
• Bit 6 set to one indicates a put failed in float high mode.

With a UART:
• Used only by get:
• Copy of RCSTA register except:
• Bit 0 is used to indicate a parity error.

Examples: #use rs232(baud=9600, xmit=PIN_A2,rcv=PIN_A3)

Example Files: ex_sqw.c

Also See: getc(), putc(), printf()

#USE STANDARD_IO

Syntax: #USE STANDARD_IO (port)

Elements: port may be A-G

C Compiler Reference Manual

68

Purpose: This directive affects how the compiler will generate code for

input and output instructions that follow. This directive takes
effect until another #use xxx_io directive is encountered.
The standard method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output every
time it is used. On the 5X processors this requires one byte
of RAM for every port set to standard I/O.

Standard_io is the default I/O method for all ports.

Examples: #use standard_io(A)

Example Files: ex_cust.c

Also See: #use fast_io, #use fixed_io

#ZERO_RAM

Syntax: #zero_ram

Elements: None

Purpose: This directive zero's out all of the internal registers that may
be used to hold variables before program execution begins.

Examples: #zero_ram
void main() {

}

Example Files: ex_cust.c

Also See: None

69

Data Definitions
Data Types
The following tables show the syntax for data definitions. If the keyword
TYPEDEF is used before the definition then the identifier does not allocate space
but rather may be used as a type specifier in other data definitions. If the
keyword CONST is used before the identifier, the identifier is treated as a
constant. Constants must have an initializer and may not be changed at run-
time. Pointers to constants are not permitted.

SHORT is a special type used to generate very efficient code for bit operations
and I/O. Arrays of SHORT and pointers to SHORT are not permitted. Note: []
in the following tables indicates an optional item.

DATA DECLARATIONS
[type-qualifier] [type-specifier] [declarator];
enum [id] { [id [= cexpr]] }

One or more comma separated

struct [*] [id] { [type-qualifier [[*] [*]id cexpr [cexpr]]]}
 or
union

One or more semi-
colon separated

Zero or more

typedef [type-qualifier] [type-specifier] [declarator];

TYPE QUALIFIER
static Variable is globally active and initialized to 0
auto Variable exists only while the procedure is active

This is the default and AUTO need not be used.
double Is a reserved word but is not a supported data type.
extern Is allowed as a qualifier however, has no effect.
register Is allowed as a qualifier however, has no effect.

C Compiler Reference Manual

70

TYPE-SPECIFIER
int1 Defines a 1 bit number
int8 Defines an 8 bit number
int16 Defines a 16 bit number
int32 Defines a 32 bit number
char Defines a 8 bit character
float Defines a 32 bit floating point number
short By default the same as int1
Int By default the same as int8
long By default the same as int16
void Indicates no specific type

The id after ENUM is created as a type large enough to the largest constant in the
list. The ids in the list are each created as a constant. By default the first id is set to
zero and they increment by one. If a =cexpr follows an id that id will have the value of
the constant expression and the following list will increment by one.

The :cexpr after an id specifies in a struct or union the number of bits to use for
the id. This number may be 1-8. Multiple [] may be used for multiple dimension
arrays. Structures and unions may be nested. The id after STRUCT may be
used in another STRUCT and the {} is not used to reuse the same structure form
again.

Examples:
int a,b,c,d;
typedef int byte;
typedef short bit;

bit e,f;
byte g[3][2];
char *h;
enum boolean {false, true};
boolean j;
byte k = 5;
byte const WEEKS = 52;
byte const FACTORS [4] =
 {8, 16, 64, 128};

struct data_record {
 byte a [2];
 byte b : 2; /*2 bits */
 byte c : 3; /*3 bits*/
 int d;

}

71

Function Definition
Function Definition

The format of a function definition is as follows:
qualifier id ([[type-specifier id]) { [stmt] }
 ^
 |
Optional See Below

 ^
 |
Zero or more
comma separated. See
Data Types

 ^
 |
Zero or more Semi-
colon separated. See
Statements.

The qualifiers for a function are as follows:
• VOID
• type-specifier
• #separate
• #inline
• #int_..

When one of the above are used and the function has a prototype (forward
declaration of the function before it is defined) you must include the qualifier on
both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the
problems created by the fact that pointers cannot be created to constant strings.
A function that has one CHAR parameter will accept a constant string where it is
called. The compiler will generate a loop that will call the function once for each
character in the string.

Example:
void lcd_putc(char c) {
...
}

lcd_putc ("Hi There.");

C Compiler Reference Manual

72

Reference Parameters

The compiler has limited support for reference parameters. This increases the
readability of code and the efficiency of some inline procedures. The following
two procedures are the same. The one with reference parameters will be
implemented with greater efficiency when it is inline.

funct_a(int*x,int*y){
 /*Traditional*/
 if(*x!=5)
 *y=*x+3;
}

funct_a(&a,&b);

funct_b(int&x,int&y){
 /*Reference params*/
 if(x!=5)
 y=x+3;
}

funct_b(a,b);

73

C Statements And Expressions
Program Syntax

A program is made up of the following four elements in a file. These are covered
in more detail in the following paragraphs.

• Comment
• Pre-Processor Directive
• Data Definition
• Function Definition

Comment

A comment may appear anywhere within a file except within a quoted string.
Characters between the /* and */ are ignored. Characters after a // up to the end
of a line are also ignored.

C Compiler Reference Manual

74

STATEMENTS

STATEMENT EXAMPLE
if (expr) stmt; [else stmt;] if (x==25)

 x=1;
else
 x=x+1;

while (expr) stmt; while (get_rtcc()!=0)
 putc(‘n’);

do stmt while (expr); do {
 putc(c=getc());
} while (c!=0);

for (expr1;expr2;expr3) stmt; for (i=1;i<=10;++i)
 printf(“%u\r\n”,i);

switch (expr) {
case cexpr: stmt; //one or
more case [default:stmt]
... }

switch (cmd) {
 case 0: printf(“cmd 0”);
 break;
 case 1: printf(“cmd 1”);
 break;
 default:printf(“bad cmd”);
 break; }

return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: I++;
break; break;
continue; continue;
expr; i=1;
; ;
{[stmt]}

zero or more

{a=1;
 b=1;}

Note: Items in [] are optional

C Statements And Expressions

75

Expressions

 CONSTANTS:
123 Decimal
0123 Octal
0x123 Hex
0b010010 Binary
'x' Character
'\010' Octal Character
'\xA5’ Hex Character
'\c' Special Character. Where c is one of:

 \n Line Feed- Same as \x0a
 \r Return Feed - Same as \x0d
 \t TAB- Same as \x09
 \b Backspace- Same as \x08
 \f Form Feed- Same as x0c
 \a Bell- Same as \x07
 \v Vertical Space- Same as \x0b
 \? Question Mark- Same as \x3f
 \’ Single Quote- Same as \x60
 \” Double Quote- Same as \x22
 \\ A Single Backslash- Same as \x5c

"abcdef" String (null is added to the end)

 IDENTIFIERS:
ABCDE Up to 32 characters beginning with a non-numeric. Valid

characters are A-Z, 0-9 and _ (underscore).
ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference
ID->ID Structure or union reference

C Compiler Reference Manual

76

Operators
+ ADDITION OPERATOR
+= Addition assignment operator, x+=y, is the same as x=x+y
&= Bitwise and assignment operator, x&=y, is the same as x=x&y
& Address operator
& Bitwise and operator
^= Bitwise exclusive or assignment operator, x^=y, is the same as

x=x^y
^ Bitwise exclusive or operator
l= Bitwise inclusive or assignment operator, xl=y, is the same as x=xly
l Bitwise inclusive or operator
?: Conditional Expression operator
- - Decrement
/= Division assignment operator, x\=y, is the same as x=x/y
/ Division operator
== Equality
> Greater than operator
>= Greater than or equal to operator
++ Increment
* Indirection operator
!= Inequality
<<= Left shift assignment operator, x<<=y, is the same as x=x<<y
< Less than operator
<< Left Shift operator
<= Less than or equal to operator
&& Logical AND operator
! Logical negation operator
ll Logical OR operator
%= Modules assignment operator x%=y, is the same as x=x%y
% Modules operator
= Multiplication assignment operator, x=y, is the same as x=x*y
* Multiplication operator
~ One's complement operator
>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator
-> Structure Pointer operation
-= Subtraction assignment operator
- Subtraction operator
sizeof Determines size in bytes of operand

C Statements And Expressions

77

Operator Precedence

 IN DESCENDING PRECEDENCE
(expr)
!expr ~expr ++expr expr++ - -expr expr-

-
(type)expr *expr &value sizeof(type)
expr*expr expr/expr expr%expr
expr+expr expr-expr
expr<<expr expr>>expr
expr<expr expr<=expr expr>expr expr>=expr
expr==expr expr!=expr
expr&expr
expr^expr
expr | expr
expr&& expr

expr || expr
value ? expr: expr
value = expr value+=expr value-=expr
value*=expr value/=expr value%=expr
value>>=expr value<<=expr value&=expr
value^=expr value|=expr expr, expr

Trigraph Sequences

The compiler accepts three character sequences instead of some special
characters not available on all keyboards as follows:

SEQUENCE SAME AS
??= #
??([
??/ \
??)]
??' ^
??< {
??! |
??> }
??- ~

79

Built-In Functions

BUILT-IN FUNCTION LIST BY CATEGORY
RS232 I/O PARALLEL SLAVE I/O
getc() p. 102 setup_psp() p. 174
putc() p. 142 psp_input_full() p. 141
fgetc() p. 102 psp_output_full() p. 141
gets() p. 106 psp_overflow() p. 141
puts() p. 143 I2C I/O
fgets() p. 106 i2c_start() p. 109
fputc() p. 142 i2c_stop() p. 110
fputs() p. 143 i2C_read p. 108
printf() p. 139 i2c_write() p. 111
kbhit() p. 117 i2c_poll() p. 108
fprintf() p. 139 PROCESSOR CONTROLS
set_uart_speed() p. 161 sleep() p. 188
perror() p. 136 reset_cpu() p. 151
assert() p. 83 restart_cause() p. 152
getchar() p. 102 disable_interrupts() p. 93
putchar() p. 142 enable_interrupts() p. 95
setup_uart() p. 180 ext_int_edge() p. 97
SPI TWO WIRE I/O read_bank() p. 146
setup_spi() p. 174 write_bank() p. 201
spi_read() p. 189 label_address() p. 119
spi_write() p. 190 goto_address() p. 107
spi_data_is_in() p. 188 getenv() p. 104
DISCRETE I/O clear_interrupts() p. 89
output_low() p. 135 setup_oscillator() p. 170
output_high() p. 134 BIT/BYTE MANIPULATION
output_float() p. 133 shift_right() p. 185
output_bit() p. 132 shift_left() p. 184
input() p. 112 rotate_right() p. 154
output_X() p. 131 rotate_left() p. 154
output_toggle() p. 135 bit_clear() p. 85
input_state() p. 113 bit_set() p. 86
input_X() p. 114 bit_test() p. 86
port_b_pullups() p. 137 swap() p. 200
set_tris_X() p. 160 make8() p. 125
 make16() p. 125
 make32() p. 126

C Compiler Reference Manual

80

BUILT-IN FUNCTION LIST BY CATEGORY… CONTINUED
STANDARD C MATH STANDARD C CHAR
abs() p. 82 atoi() p. 84
acos() p. 82 atoi32() p. 84
asin() p. 82 atol() p. 84
atan() p. 186 atof() p. 83
ceil() p. 89 itoa() p. 117
cos() p. 90 tolower() p. 201
exp() p. 96 toupper() p. 201
floor() p. 99 isalnum() p. 115
labs() p. 119 isalpha() p. 115
sinh() p. 186 isamoung() p. 116
log() p. 122 isdigit() p. 115
log10() p. 123 islower() p. 115
pow() p. 138 isspace() p. 115
sin() p. 186 isupper() p. 115
cosh() p. 90 isxdigit() p. 115
tanh() p. 200 strlen() p. 193
fabs() p. 98 strcpy() p. 193
fmod() p. 99 strncpy() p. 193
atan2() p. 186 strcmp() p. 193
frexp() p. 101 stricmp() p. 193
ldexp() p. 122 strncmp() p. 193
modf() p. 129 strcat() p. 193
sqrt() p. 191 strstr() p. 193
tan() p. 200 strchr() p. 193
div() p. 94 strrchr() p. 193
ldiv() p. 94 isgraph() p. 115
VOLTAGE REF iscntrl p. 115
setup_vref() p. 182 strtok() p. 197
setup_low_volt_detect p. 169 strspn() p. 193
A/D CONVERSION strcspn() p. 193
setup_adc_ports() p. 164 strpbrk() p. 193
setup_adc() p. 163 strlwr() p. 193
set_adc_channel() p. 155 sprintf() p. 191
read_adc() p. 145 isprint() p. 115
 strtod() p. 196
 strtol() p. 198
 strtoul() p. 199
 strncat() p. 193
 strcoll(), strxfrm() p. 193

Built-In Functions

81

BUILT-IN FUNCTION LIST BY CATEGORY… CONTINUED
TIMERS INTERNAL EEPROM
setup_timer_X() p. 175 read_eeprom() p. 148
set_timer_X() p. 159 write_eeprom() p. 202
get_timer_X() p. 101 read_program_eeprom() p. 149
setup_counters() p. 167 write_program_eeprom() p. 204
setup_wdt() p. 183 read_calibration() p. 147
restart_wdt() p. 152 write_program_memory() p. 205
STANDARD C MEMORY read_program_memory() p. 149
memset() p. 129 write_external_memory() p. 203
memcpy() p. 128 erase_program_memory() p. 96
offsetof() p. 130 read_external_memory() p. 149
offsetofbit() p. 130 setup_external_memory() p. 168
malloc() p. 127 STANDARD C SPECIAL
calloc() p. 88 rand() p. 145
free() p. 100 srand() p. 192
realloc() p. 150 DELAYS
memmove() p. 128 delay_us() p. 92
memcmp() p. 193 delay_ms() p. 91
memchr() p. 193 delay_cycles() p. 90
 ANALOG COMPARE
 setup_comparator() p. 166
CAPTURE/COMPARE/PWM
setup_ccpX() p. 165
set_pwmX_duty() p. 156
setup_power_pwm() p. 171
setup_power_pwm_pins() p. 173
set_power_pwmx_duty() p. 157
set_power_pwm_override() p. 158

C Compiler Reference Manual

82

ABS()

Syntax: value = abs(x)

Parameters: x is a signed 8, 16, or 32 bit int or a float

Returns: Same type as the parameter.

Function: Computes the absolute value of a number.

Availability: All devices

Requires #include <stdlib.h>

Examples: signed int target,actual;
 ...
error = abs(target-actual);

Example Files: None

Also See: labs()

ACOS()

See: SIN()

ASIN()

See: SIN()

Built-In Functions

83

ASSERT()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate

an error message on STDERR (by default the first USE
RS232 in the program). The error message will include the
file and line of the assert(). No code is generated for the
assert() if you #define NODEBUG. In this way you may
include asserts in your code for testing and quickly eliminate
them from the final program..

Availability: All devices

Requires assert.h and #use rs232

Examples: assert(number_of_entries<TABLE_SIZE);

// If number_of_entries is >= TABLE_SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

Example Files: None

Also See: #use rs232

ATOF()

Syntax: result = atof (string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a 32 bit floating point number.

C Compiler Reference Manual

84

Function: Converts the string passed to the function into a floating

point representation. If the result cannot be represented, the
behavior is undefined.

Availability: All devices

Requires #include <stdlib.h>

Examples: char string [10];
float x;

strcpy (string, "123.456");
x = atof(string);
// x is now 123.456

Example Files: ex_tank.c

Also See: atoi(), atol(), atoi32(), printf()

ATOI()
ATOL()
ATOI32()

Syntax: ivalue = atoi(string)
 or
lvalue = atol(string)
 or
i32value = atoi32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
lvalue is a 16 bit int.
i32value is a 32 bit int.

Function: Converts the string pointed to by ptr to int representation.
Accepts both decimal and hexadecimal argument. If the
result cannot be represented, the behavior is undefined.

Availability: All devices

Built-In Functions

85

Requires #include <stdlib.h>

Examples: char string[10];
int x;

strcpy(string,"123");
x = atoi(string);
// x is now 123

Example Files: input.c

Also See: printf()

BIT_CLEAR()

Syntax: bit_clear(var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue) bit is a
number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: undefined

Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the
given variable. The least significant bit is 0. This function is
the same as: var &= ~(1<<bit);

Availability: All devices

Requires None

Examples: int x;
x=5;
bit_clear(x,2);
// x is now 1

bit_clear(*11,7); // A crude way to disable ints

Example Files: ex_patg.c

Also See: bit_set(), bit_test()

C Compiler Reference Manual

86

BIT_SET()

Syntax: bit_set(var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue)

bit is a number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: Undefined

Function: Sets the specified bit (0-7, 0-15 or 0-31) in the given variable.
 The least significant bit is 0. This function is the same as:
var |= (1<<bit);

Availability: All devices

Requires Nothing

Examples: int x;
x=5;
bit_set(x,3);
// x is now 13

bit_set(*6,1); // A crude way to set pin B1 high

Example Files: ex_patg.c

Also See: bit_clear(), bit_test()

BIT_TEST()

Syntax: value = bit_test (var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue) bit is a
number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: 0 or 1

Built-In Functions

87

Function: Tests the specified bit (0-7,0-15 or 0-31) in the given
variable. The least significant bit is 0. This function is
much more efficient than, but otherwise the same as: ((var &
(1<<bit)) != 0)

Availability: All devices

Requires Nothing

Examples: if(bit_test(x,3) || !bit_test (x,1)){
 //either bit 3 is 1 or bit 1 is 0
}

if(data!=0)
 for(i=31;!bit_test(data, i);i--) ;
// i now has the most significant bit in data
// that is set to a 1

Example Files: ex_patg.c

Also See: bit_clear(), bit_set()

BSEARCH()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data
width: Width of elements in search data
compare: Function that compares two elements in search
data

Returns: bsearch returns a pointer to an occurrence of key in the array
pointed to by base. If key is not found, the function returns
NULL. If the array is not in order or contains duplicate records
with identical keys, the result is unpredictable.

Function: Performs a binary search of a sorted array

Availability: All devices

C Compiler Reference Manual

88

Requires #include <stdlib.h>

Examples: int nums[5]={1,2,3,4,5};
int compar(const void *arg1,const void *arg2);

void main() {
 int *ip, key;
 key = 3;
 ip = bsearch(&key, nums, 5, sizeof(int), compar);
}

int compar(const void *arg1,const void *arg2) {
 if (* (int *) arg1 < (* (int *) arg2) return –1
 else if (* (int *) arg1 == (* (int *) arg2) return 0
 else return 1;
}

Example Files: None

Also See: qsort()

CALLOC()

Syntax: ptr=calloc(nmem, size)

Parameters: nmem is an integer representing the number of member
objects and size the number of bytes to be allocated or each
one of them.

Returns: A pointer to the allocated memory, if any. Returns null
otherwise.

Function: The calloc function allocates space for an array of nmem
objects whose size is specified by size. The space is
initialized to all bits zero.

Availability: All devices

Requires STDLIBM.H must be included

Examples: int * iptr;
iptr=calloc(5,10);
// iptr will point to a block of memory of
// 50 bytes all initialized to 0.

Built-In Functions

89

Example Files: None

Also See: realloc(), free(), malloc()

CEIL()

Syntax: result = ceil (value)

Parameters: value is a float

Returns: A float

Function: Computes the smallest integral value greater than the
argument. CEIL(12.67) is 13.00.

Availability: All devices

Requires #include <math.h>

Examples: // Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;

Example Files: None

Also See: floor()

CLEAR_INTERRUPT()

Syntax: clear_interrupt(level)

Parameters: level – a constant defined in the devices.h file

Returns: undefined

C Compiler Reference Manual

90

Function: Clears the interrupt flag for the given level. This function

is designed for use with a specific interrupt, thus
eliminating the GLOBAL level as a possible parameter.

Availability: All devices

Requires Nothing

Examples: clear_interrupt(int_timer1);

Example Files: None

Also See: enable_interrupts(), #INT

COS()

See: SIN()

COSH()

See: SIN()

DELAY_CYCLES()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of
instruction clocks (1-255). An instruction clock is equal to
four oscillator clocks.

Built-In Functions

91

The delay time may be longer than requested if an interrupt
is serviced during the delay. The time spent in the ISR does
not count toward the delay time.

Availability: All devices

Requires Nothing

Examples: delay_cycles(1); // Same as a NOP

delay_cycles(25); // At 20 mhz a 5us delay

Example Files: ex_cust.c

Also See: delay_us(), delay_ms()

DELAY_MS()

Syntax: delay_ms (time)

Parameters: time - a variable 0-255 or a constant 0-65535

Returns: undefined

Function: This function will create code to perform a delay of the
specified length. Time is specified in milliseconds. This
function works by executing a precise number of instructions
to cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine is
not counted toward the time.

The delay time may be longer than requested if an interrupt
is serviced during the delay. The time spent in the ISR does
not count toward the delay time.

Availability: All devices

Requires #use delay

C Compiler Reference Manual

92

Examples: #use delay (clock=20000000)

delay_ms(2);

void delay_seconds(int n) {
 for (;n!=0; n- -)
 delay_ms(1000);
}

Example Files: ex_sqw.c

Also See: delay_us(), delay_cycles(), #use delay

DELAY_US()

Syntax: delay_us (time)

Parameters: time - a variable 0-255 or a constant 0-65535

Returns: undefined

Function: Creates code to perform a delay of the specified length.
Time is specified in microseconds. Shorter delays will be
INLINE code and longer delays and variable delays are calls
to a function. This function works by executing a precise
number of instructions to cause the requested delay. It does
not use any timers. If interrupts are enabled the time spent
in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt
is serviced during the delay. The time spent in the ISR does
not count toward the delay time.

Availability: All devices

Requires #use delay

Built-In Functions

93

Examples: #use delay(clock=20000000)

do {
output_high(PIN_B0);
delay_us(duty);
output_low(PIN_B0);
delay_us(period-duty);
} while(TRUE);

Example Files: ex_sqw.c

Also See: delay_ms(), delay_cycles(), #use delay

DISABLE_INTERRUPTS()

Syntax: disable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Disables the interrupt at the given level. The GLOBAL level
will not disable any of the specific interrupts but will prevent
any of the specific interrupts, previously enabled to be
active. Valid specific levels are the same as are used in
#INT_xxx and are listed in the devices .h file. GLOBAL will
also disable the peripheral interrupts on devices that have it.
Note that it is not necessary to disable interrupts inside an
interrupt service routine since interrupts are automatically
disabled.

Availability: Device with interrupts (PCM and PCH)

Requires Should have a #int_xxxx, constants are defined in the
devices .h file.

C Compiler Reference Manual

94

Examples: disable_interrupts(GLOBAL); // all interrupts OFF

disable_interrupts(INT_RDA); // RS232 OFF

enable_interrupts(ADC_DONE);
enable_interrupts(RB_CHANGE);
 // these enable the interrupts
 // but since the GLOBAL is disabled they
 // are not activated until the following
 // statement:
enable_interrupts(GLOBAL);

Example Files: ex_sisr.c, ex_stwt.c

Also See: enable_interrupts(), #int_xxxx

DIV()
LDIV()

Syntax: idiv=div(num, denom)
ldiv =ldiv(lnum, ldenom)
idiv=ldiv(lnum, ldenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
lnum and ldenom are signed longs.
lnum is the numerator and ldenom is the denominator.

Returns: idiv is an object of type div_t and lidiv is an object of type
ldiv_t. The div function returns a structure of type div_t,
comprising of both the quotient and the remainder. The ldiv
function returns a structure of type ldiv_t, comprising of both
the quotient and the remainder.

Function: The div and ldiv function computes the quotient and
remainder of the division of the numerator by the
denominator. If the division is inexact, the resulting quotient
is the integer or long of lesser magnitude that is the nearest
to the algebraic quotient. If the result cannot be represented,
the behavior is undefined; otherwise
quot*denom(ldenom)+rem shall equal num(lnum).

Built-In Functions

95

Availability: All devices.
Requires #include <STDLIB.H>

Examples: div_t idiv;

ldiv_t lidiv;
idiv=div(3,2);
// idiv will contain quot=1 and rem=1

lidiv=ldiv(300,250);
//lidiv will contain quot=1 and rem=50

Example Files: None

Also See: None

ENABLE_INTERRUPTS()

Syntax: enable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Enables the interrupt at the given level. An interrupt
procedure should have been defined for the indicated
interrupt. The GLOBAL level will not enable any of the
specific interrupts but will allow any of the specific interrupts
previously enabled to become active.

Availability: Device with interrupts (PCM and PCH)

Requires Should have a #int_xxxx, Constants are defined in the
devices .h file.

Examples: enable_interrupts(GLOBAL);
enable_interrupts(INT_TIMER0);
enable_interrupts(INT_TIMER1);

Example Files: ex_sisr.c, ex_stwt.c

Also See: disable_enterrupts(), #int_xxxx

C Compiler Reference Manual

96

ERASE_PROGRAM_EEPROM()

Syntax: erase_program_eeprom (address);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts.

The least significant bits may be ignored.

Returns: undefined

Function: Erases FLASH_ERASE_SIZE bytes to 0xFFFF in program
memory. FLASH_ERASE_SIZE varies depending on the
part. For example, if it is 64 bytes then the least significant 6
bits of address is ignored.

See WRITE_PROGRAM_MEMORY for more information on
program memory access.

Availability: Only devices that allow writes to program memory.

Requires Nothing

Examples: for(i=0x1000;i<=0x1fff;i+=getenv("FLASH_ERASE_SIZE"))
erase_program_memory(i);

Example Files: None

Also See: WRITE_PROGRAM_EEPROM(),
WRITE_PROGRAM_MEMORY()

EXP()

Syntax: result = exp (value)

Parameters: value is a float

Returns: A float

Built-In Functions

97

Function: Computes the exponential function of the argument. This is

e to the power of value where e is the base of natural
logarithms. exp(1) is 2.7182818.

Note on error handling:
If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Range error occur in the following case:
• exp: when the argument is too large

Availability: All devices

Requires math.h must be included

Examples: // Calculate x to the power of y

x_power_y = exp(y * log(x));

Example Files: None

Also See: pow(), log(), log10()

EXT_INT_EDGE()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and 0
otherwise source is optional and defaults to 0 edge is a
constant H_TO_L or L_TO_H representing "high to low" and
"low to high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The
edge may be L_TO_H or H_TO_L to specify the rising or
falling edge.

C Compiler Reference Manual

98

Availability: Only devices with interrupts (PCM and PCH)

Requires Constants are in the devices .h file

Examples: ext_int_edge(2, L_TO_H); // Set up PIC18 EXT2

ext_int_edge(H_TO_L); // Sets up EXT

Example Files: ex_wakup.c

Also See: #INT_EXT, enable_interrupts(), disable_interrupts()

FABS()

Syntax: result=fabs (value)

Parameters: value is a float

Returns: result is a float

Function: The fabs function computes the absolute value of a float

Availability: All devices.

Requires MATH.H must be included

Examples: float result;

result=fabs(-40.0)
// result is 40.0

Example Files: None

Also See: abs(), labs()

Built-In Functions

99

FLOOR()

Syntax: result = floor (value)

Parameters: value is a float

Returns: result is a float

Function: Computes the greatest integral value not greater than the
argument. Floor (12.67) is 12.00.

Availability: All devices.

Requires MATH.H must be included

Examples: // Find the fractional part of a value

frac = value - floor(value);

Example Files: None

Also See: ceil()

FMOD()

Syntax: result= fmod (val1, val2)

Parameters: val1 and val2 are floats

Returns: result is a float

Function: Returns the floating point remainder of val1/val2. Returns

the value val1 - i*val2 for some integer “i” such that, if val2 is
nonzero, the result has the same sign as val1 and magnitude
less than the magnitude of val2.

Availability: All devices.

C Compiler Reference Manual

100

Requires MATH.H must be included

Examples: float result;
result=fmod(3,2);
// result is 1

Example Files: None

Also See: None

FREE()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or
realloc.

Returns: No value

Function: The free function causes the space pointed to by the ptr to
be deallocated, that is made available for further allocation. If
ptr is a null pointer, no action occurs. If the ptr does not
match a pointer earlier returned by the calloc, malloc or
realloc, or if the space has been deallocated by a call to free
or realloc function, the behavior is undefined.

Availability: All devices.

Requires STDLIBM.H must be included

Examples: int * iptr;
iptr=malloc(10);
free(iptr)
// iptr will be deallocated

Example Files: None

Also See: realloc(), malloc(), calloc()

Built-In Functions

101

FREXP()

Syntax: result=frexp (value, & exp);

Parameters: value is float

exp is a signed int.

Returns: result is a float

Function: The frexp function breaks a floating point number into a
normalized fraction and an integral power of 2. It stores the
integer in the signed int object exp. The result is in the
interval [1/2,1) or zero, such that value is result times 2
raised to power exp. If value is zero then both parts are
zero.

Availability: All devices.

Requires MATH.H must be included
Examples: float result;

signed int exp;
result=frexp(.5,&exp);
// result is .5 and exp is 0

Example Files: None

Also See: ldexp(), exp(), log(), log10(), modf()

GET_TIMERx()

Syntax: value=get_timer0() Same as: value=get_rtcc()
value=get_timer1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()

Parameters: None

C Compiler Reference Manual

102

Returns: Timers 1, 3, and 5 return a 16 bit int.

Timers 2 and 4 return an 8 bit int.
Timer 0 (AKA RTCC) returns a 8 bit int except on the
PIC18XXX where it returns a 16 bit int.

Function: Returns the count value of a real time clock/counter. RTCC
and Timer0 are the same. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2...).

Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires Nothing

Examples: set_timer0(0);
while (get_timer0() < 200) ;

Example Files: ex_stwt.c

Also See: set_timerx(), setup_timerx()

GETC()
CH()
GETCHAR()
FGETC()

Syntax: value = getc()

value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)

Returns: An 8 bit character

Built-In Functions

103

Function: This function waits for a character to come in over the RS232
RCV pin and returns the character. If you do not want to
hang forever waiting for an incoming character use kbhit() to
test for a character available. If a built-in USART is used the
hardware can buffer 3 characters otherwise GETC must be
active while the character is being received by the PIC®.

If fgetc() is used then the specified stream is used where
getc() defaults to STDIN (the last USE RS232).

Availability: All devices

Requires #use rs232

Examples: printf("Continue (Y,N)?");
do {
 answer=getch();
}while(answer!='Y' && answer!='N');

#use rs232(baud=9600,xmit=pin_c6,
 rcv=pin_c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin_b1,
 rcv=pin_b0,stream=GPS)
#use rs232(baud=9600,xmit=pin_b3,
 stream=DEBUG)
...
while(TRUE) {
 c=fgetc(GPS);
 fputc(c,HOSTPC);
 if(c==13)
 fprintf(DEBUG,"Got a CR\r\n");
}

Example Files: ex_stwt.c

Also See: putc(), kbhit(), printf(), #use rs232, input.c

C Compiler Reference Manual

104

GETENV()

Syntax: value = getenv (cstring);

Parameters: cstring is a constant string with a recognized keyword

Returns: A constant number, a constant string or 0

Function: This function obtains information about the execution
environment. The following are recognized keywords. This
function returns a constant 0 if the keyword is not
understood.

FUSE_SET fffff Returns 1 if fuse fffff
is enabled

FUSE_VALID fffff Returns 1 if fuse fffff
is valid

INT:iiiii Returns 1 if the interrupt
iiiii is valid

ID Returns the device ID (set
by #ID)

DEVICE Returns the device name
string (like "PIC16C74")

VERSION Returns the compiler
version as a float

VERSION_STRING Returns the compiler
version as a string

PROGRAM_MEMORY Returns the size of
memory for code (in
words)

STACK Returns the stack size
DATA_EEPROM Returns the number of

bytes of data EEPROM
READ_PROGRAM Returns a 1 if the code

memory can be read
PIN:pb Returns a 1 if bit b on port

p is on this part
ADC_CHANNELS Returns the number of

A/D channels

Built-In Functions

105

ADC_RESOLUTION Returns the number of
bits returned from
READ_ADC()

ICD Returns a 1 if this is being
compiled for a ICD

SPI Returns a 1 if the device
has SPI

USB Returns a 1 if the device
has USB

CAN Returns a 1 if the device
has CAN

I2C_SLAVE Returns a 1 if the device
has I2C slave H/W

I2C_MASTER Returns a 1 if the device
has I2C master H/W

PSP Returns a 1 if the device
has PSP

COMP Returns a 1 if the device
has a comparator

VREF Returns a 1 if the device
has a voltage reference

LCD Returns a 1 if the device
has direct LCD H/W

UART Returns the number of
H/W UARTs

CCPx Returns a 1 if the device
has CCP number x

TIMERx Returns a 1 if the device
has TIMER number x

FLASH_WRITE_SIZE Smallest number of bytes
that can be written to
FLASH

FLASH_ERASE_SIZE Smallest number of bytes
that can be erased in
FLASH

BYTES_PER_ADDRESS Returns the number of
bytes at an address
location

C Compiler Reference Manual

106

BITS_PER_INSTRUCTION Returns the size of an
instruction in bits

Availability: All devices

Requires Nothing

Examples: #IF getenv("VERSION")<3.050
 #ERROR Compiler version too old
#ENDIF

for(i=0;i<getenv("DATA_EEPROM");i++)
 write_eeprom(i,0);

#IF getenv("FUSE_VALID:BROWNOUT")
 #FUSE BROWNOUT
#ENDIF

Example Files: None

Also See: None

GETS()
FGETS()

Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters. Stream is a
stream identifier (a constant byte)

Returns: undefined

Function: Reads characters (using GETC()) into the string until a
RETURN (value 13) is encountered. The string is terminated
with a 0. Note that INPUT.C has a more versatile
GET_STRING function.

If fgets() is used then the specified stream is used where
gets() defaults to STDIN (the last USE RS232).

Availability: All devices

Built-In Functions

107

Requires #use rs232

Examples: char string[30];

printf("Password: ");
gets(string);
if(strcmp(string, password))
 printf("OK");

Example Files: None

Also See: getc(), get_string in input.c

GOTO_ADDRESS()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location.

Jumps outside of the current function should be done only
with great caution. This is not a normally used function
except in very special situations.

Availability: All devices

Requires Nothing

Examples: #define LOAD_REQUEST PIN_B1
#define LOADER 0x1f00

if(input(LOAD_REQUEST))
 goto_address(LOADER);

Example Files: setjmp.h

Also See: label_address()

C Compiler Reference Manual

108

I2C_POLL()

Syntax: i2c_poll()

Parameters: None

Returns: 1 (TRUE) or 0 (FALSE)

Function: The I2C_POLL() function should only be used when the built-
in SSP is used. This function returns TRUE if the hardware
has a received byte in the buffer. When a TRUE is returned,
a call to I2C_READ() will immediately return the byte that
was received.

Availability: Devices with built in I2C

Requires #use i2c

Examples: i2c_start(); // Start condition
i2c_write(0xc1); // Device address/Read
count=0;
while(count!=4) {
 while(!i2c_poll()) ;
 buffer[count++]= i2c_read(); //Read Next
}
i2c_stop(); // Stop condition

Example Files: ex_slave.c

Also See: i2c_start, i2c_write, i2c_stop, i2c_poll

I2C_READ()

Syntax: data = i2c_read();

 or
data = i2c_read(ack);

Parameters: ack -Optional, defaults to 1.
0 indicates do not ack.
1 indicates to ack.

Built-In Functions

109

Returns: data - 8 bit int

Function: Reads a byte over the I2C interface. In master mode this
function will generate the clock and in slave mode it will wait
for the clock. There is no timeout for the slave, use
I2C_POLL to prevent a lockup. Use RESTART_WDT in the
#USE I2C to strobe the watch-dog timer in the slave mode
while waiting.

Availability: Devices with built in I2C

Requires #use i2c

Examples: i2c_start();
i2c_write(0xa1);
data1 = i2c_read();
data2 = i2c_read();
i2c_stop();

Example Files: ex_extee.c with 2416.C

Also See: i2c_start, i2c_write, i2c_stop, i2c_poll

I2C_START()

Syntax: i2c_start()

Parameters: None

Returns: undefined

Function: Issues a start condition when in the I2C master mode. After

the start condition the clock is held low until I2C_WRITE() is
called. If another I2C_start is called in the same function
before an i2c_stop is called then a special restart condition is
issued. Note that specific I2C protocol depends on the slave
device.

Availability: All devices.

C Compiler Reference Manual

110

Requires #use i2c

Examples: i2c_start();
i2c_write(0xa0); // Device address
i2c_write(address); // Data to device
i2c_start(); // Restart
i2c_write(0xa1); // to change data direction
data=i2c_read(0); // Now read from slave
i2c_stop();

Example Files: ex_extee.c with 2416.C

Also See: i2c_start, i2c_write, i2c_stop, i2c_poll

I2C_STOP()

Syntax: i2c_stop()

Parameters: None

Returns: undefined

Function: Issues a stop condition when in the I2C master mode.

Availability: All devices.

Requires #use i2c

Examples: i2c_start(); // Start condition

i2c_write(0xa0); // Device address
i2c_write(5); // Device command
i2c_write(12); // Device data
i2c_stop(); // Stop condition

Example Files: ex_extee.c with 2416.C

Also See: i2c_start, i2c_write, i2c_read, i2c_poll, #use i2c

Built-In Functions

111

I2C_WRITE()

Syntax: i2c_write (data)

Parameters: data is an 8 bit int

Returns: This function returns the ACK Bit.

0 means ACK, 1 means NO ACK.

Function: Sends a single byte over the I2C interface. In master mode
this function will generate a clock with the data and in slave
mode it will wait for the clock from the master. No automatic
timeout is provided in this function. This function returns the
ACK bit. The LSB of the first write after a start determines the
direction of data transfer (0 is master to slave). Note that specific
I2C protocol depends on the slave device.

Availability: All devices.

Requires #use i2c

Examples: long cmd;
 ...
i2c_start(); // Start condition
i2c_write(0xa0);// Device address
i2c_write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command
i2c_stop(); // Stop condition

Example Files: ex_extee.c with 2416.C

Also See: i2c_start(), i2c_stop, i2c_read, i2c_poll, #use i2c

C Compiler Reference Manual

112

INPUT()

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

Returns: 0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The
method of I/O is dependent on the last USE *_IO directive.
By default with standard I/O before the input is done the data
direction is set to input.

Availability: All devices.

Requires Pin constants are defined in the devices .h file

Examples: while (!input(PIN_B1));
// waits for B1 to go high

if(input(PIN_A0))
 printf("A0 is now high\r\n");

Example Files: EX_PULSE.C

Also See: input_x(), output_low(), output_high(), #use xxxx_io

Built-In Functions

113

INPUT_STATE()

Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port A (byte
5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #define PIN_A3 43.

Returns: Bit specifying whether pin is input or output. A 1
indicates the pin is input and a 0 indicates it is output.

Function: This function reads the I/O state of a pin without
changing the direction of the pin as INPUT() does.

Availability: All devices.

Requires Nothing

Examples: dir = input_state(pin_A3);
printf("Direction: %d",dir);

Example Files: None

Also See: input(), set_tris_x(), output_low(), output_high()

C Compiler Reference Manual

114

INPUT_x()

Syntax: value = input_a()

value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters: None

Returns: An 8 bit int representing the port input data.

Function: Inputs an entire byte from a port. The direction register is
changed in accordance with the last specified #USE *_IO
directive. By default with standard I/O before the input is
done the data direction is set to input.

Availability: All devices.

Requires Nothing

Examples: data = input_b();

Example Files: ex_psp.c

Also See: input(), output_x(), #USE xxxx_IO

Built-In Functions

115

ISALNUM(char)
ISALPHA(char)
ISDIGIT(char)
ISLOWER(char)
ISSPACE(char)
ISUPPER(char)
ISXDIGIT(char)
ISCNTRL(x)
ISGRAPH(x)
ISPRINT(x)
ISPUNCT(x)

Syntax: value = isalnum(datac)

value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or
number

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or
TRUE) if datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as
follows:

isalnum(x) X is 0..9, 'A'..'Z', or 'a'..'z'
isalpha(x) X is 'A'..'Z' or 'a'..'z
isdigit(x) X is '0'..'9'
islower(x) X is 'a'..'z'
isupper(x) X is 'A'..'Z
isspace(x) X is a space
isxdigit(x) X is '0'..'9', 'A'..'F', or 'a'..'f

Availability: All devices.

C Compiler Reference Manual

116

Requires ctype.h

Examples: char id[20];
 ...
if(isalpha(id[0])) {
 valid_id=TRUE;
 for(i=1;i<strlen(id);i++)
 valid_id=valid_id&& isalnum(id[i]);
} else
 valid_id=FALSE;

Example Files: ex_str.c

Also See: isamoung()

ISAMOUNG()

Syntax: result = isamoung (value, cstring)

Parameters: value is a character

cstring is a constant string

Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Function: Returns TRUE if a character is one of the characters in a
constant string.

Availability: All devices.

Requires Nothing

Examples: char x;
...
if(isamoung(x,
 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
 printf("The character is valid");

Example Files: ctype.h

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(),
isxdigit()

Built-In Functions

117

ITOA()

Syntax: string = itoa(i32value, i8base)

Parameters: i32value is a 32 bit int

i8base is a 8 bit int

Returns: string is a pointer to a null terminated string of characters

Function: Converts the signed int32 to a string according to the
provided base and returns the converted value if any. If the
result cannot be represented, the function will return 0.

Availability: All devices

Requires #inlcude<stdlib.h>

Examples: int32 x=1234;
char string[5];

string=itoa(x,10);
// string is now “1234”

Example Files: None

Also See: None

C Compiler Reference Manual

118

KBHIT()

Syntax: value = kbhit()

value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port.
 If the stream parameter is not included, the function uses
the primary stream used by getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to
come in, 1 (or TRUE) if a character is ready for getc()

Function: If the RS232 is under software control this function returns
TRUE if the start bit of a character is being sent on the
RS232 RCV pin. If the RS232 is hardware this function
returns TRUE is a character has been received and is
waiting in the hardware buffer for getc() to read. This
function may be used to poll for data without stopping and
waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10
times the bit rate to ensure incoming data is not lost.

Availability: All devices.

Requires #use rs232

Examples: char timed_getc() {

 long timeout;

 timeout_error=FALSE;
 timeout=0;
 while(!kbhit()&&(++timeout<50000)) // 1/2
 // second
 delay_us(10);
 if(kbhit())
 return(getc());
 else {
 timeout_error=TRUE;
 return(0);
 }
}

Built-In Functions

119

Example Files: ex_tgetc.c

Also See: getc(), #USE RS232

LABEL_ADDRESS()

Syntax: value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH

Function: This function obtains the address in ROM of the next

instruction after the label. This is not a normally used
function except in very special situations.

Availability: All devices.

Requires Nothing

Examples: start:
 a = (b+c)<<2;
end:
 printf("It takes %lu ROM locations.\r\n",
 label_address(end)-label_address(start));

Example Files: setjmp.h

Also See: goto_address()

LABS()

Syntax: result = labs (value)

Parameters: value is a 16 bit signed long int

Returns: A 16 bit signed long int

C Compiler Reference Manual

120

Function: Computes the absolute value of a long integer.

Availability: All devices.
Requires stdlib.h must be included

Examples: if(labs(target_value - actual_value) > 500)

 printf("Error is over 500 points\r\n");

Example Files: None

Also See: abs()

LCD_LOAD()

Syntax: lcd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD,

offset is the offset into the LCD segment memory to write
the data, length is the number of bytes to transfer.

Returns: undefined

Function: Will load length bytes from buffer_pointer into the 923/924
LCD segment data area beginning at offset (0-15).
lcd_symbol provides an easier way to write data to the
segment memory.

Availability: This function is only available on devices with LCD drive
hardware.

Requires Constants are defined in the devices .h file.

Examples: lcd_load(buffer, 0, 16);

Example Files: ex_92lcd.c

Also See: lcd_symbol(), setup_lcd()

Built-In Functions

121

LCD_SYMBOL()

Syntax: lcd_symbol (symbol, b7_addr, b6_addr, b5_addr,

b4_addr, b3_addr, b2_addr, b1_addr, b0_addr);

Parameters: symbol is a 8 bit constant.
bX_addr is a bit address representing the segment location
to be used for bit X of symbol.

Returns: undefined

Function: Loads 8 bits into the segment data area for the LCD with
each bit address specified. If bit 7 in symbol is set the
segment at B7_addr is set, otherwise it is cleared. The
same is true of all other bits in symbol. The B7_addr is a bit
address into the LCD RAM.

Availability: This function is only available on devices with LCD drive
hardware.

Requires Constants are defined in the devices .h file.

Examples: byte CONST DIGIT_MAP[10]=
{0X90,0XB7,0X19,0X36,0X54,0X50,0XB5,0X24};

#define DIGIT_1_CONFIG
COM0+2,COM0+4,COM05,COM2+4,COM2+1,
COM1+4,COM1+5

for(i=1; i<=9; ++i) {
 LCD_SYMBOL(DIGIT_MAP[i],DIGIT_1_CONFIG);
 delay_ms(1000);
}

Example Files: ex_92lcd.c

Also See: setup_lcd(), lcd_load()

C Compiler Reference Manual

122

LDEXP()

Syntax: result= ldexp (value, exp);

Parameters: value is float

exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.

Function: The ldexp function multiplies a floating-point number by an
integral power of 2.

Availability: All devices.

Requires MATH.H must be included

Examples: float result;
signed int exp;
result=ldexp(.5,0);
// result is .5

Example Files: None

Also See: frexp(), exp(), log(), log10(), modf()

LOG()

Syntax: result = log (value)

Parameters: value is a float

Returns: A float

Function: Computes the natural logarithm of the float x. If the
argument is less than or equal to zero or too large, the
behavior is undefined.

Built-In Functions

123

Note on error handling:
f "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
• log: when the argument is negative

Availability: All devices

Requires math.h must be included.

Examples: lnx = log(x);

Example Files: None

Also See: log10(), exp(), pow()

LOG10()

Syntax: result = log10 (value)

Parameters: value is a float

Returns: A float

Function: Computes the base-ten logarithm of the float x. If the

argument is less than or equal to zero or too large, the
behavior is undefined.

Note on error handling:
If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
• log10: when the argument is negative

C Compiler Reference Manual

124

Availability: All devices

Requires #include <math.h>

Examples: db = log10(read_adc()*(5.0/255))*10;

Example Files: None

Also See: log(), exp(), pow()

LONGJMP()

Syntax: longjmp (env, val)

Parameters: nve: The data object that will be restored by this function

val: The value that the function setjmp will return. If val is 0
then the function setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as
if the corresponding invocation of the setjmp function had
just returned the value specified by val

Function: Performs the non-local transfer of control.

Availability: All devices

Requires #include <setjmp.h>

Examples: longjmp(jmpbuf, 1);

Example Files: None

Also See: setjmp()

Built-In Functions

125

MAKE8()

Syntax: i8 = MAKE8(var, offset)

Parameters: var is a 16 or 32 bit integer.

offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >>
(offset*8)) & 0xff) except it is done with a single byte move.

Availability: All devices

Requires Nothing

Examples: int32 x;
int y;

y = make8(x,3); // Gets MSB of x

Example Files: None

Also See: make16(), make32()

MAKE16()

Syntax: i16 = MAKE16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either

parameter is 16 or 32 bits only the lsb is used. Same as: i16
= (int16)(varhigh&0xff)*0x100+(varlow&0xff) except it is done
with two byte moves.

C Compiler Reference Manual

126

Availability: All devices

Requires Nothing

Examples: long x;
int hi,lo;

x = make16(hi,lo);

Example Files: ltc1298.c

Also See: make8(), make32()

MAKE32()

Syntax: i32 = MAKE32(var1, var2, var3, var4)

Parameters: var1-4 are a 8 or 16 bit integers. var2-4 are optional.

Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16

bit numbers. Note that the number of parameters may be 1
to 4. The msb is first. If the total bits provided is less than
32 then zeros are added at the msb.

Availability: All devices

Requires Nothing

Examples: int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

Built-In Functions

127

Example Files: ex_freqc.c

Also See: make8(), make16()

MALLOC()

Syntax: ptr=malloc(size)

Parameters: size is an integer representing the number of byes to be

allocated.

Returns: A pointer to the allocated memory, if any. Returns null
otherwise.

Function: The malloc function allocates space for an object whose size
is specified by size and whose value is indeterminate.

Availability: All devices

Requires STDLIBM.H must be included

Examples: int * iptr;
iptr=malloc(10);
// iptr will point to a block of memory of 10 bytes.

Example Files: None

Also See: realloc(), free(), calloc()

C Compiler Reference Manual

128

MEMCPY()
MEMMOVE()

Syntax: memcpy (destination, source, n)

memmove(destination, source, n)

Parameters: destination is a pointer to the destination memory, source
is a pointer to the source memory, n is the number of bytes
to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware
that array names are pointers where other variable names
and structure names are not (and therefore need a & before
them).

Memmove performs a safe copy (overlapping objects doesn't
cause a problem). Copying takes place as if the n characters
from the source are first copied into a temporary array of n
characters that doesn't overlap the destination and source
objects. Then the n characters from the temporary array are
copied to destination.

Availability: All devices

Requires Nothing

Examples: memcpy(&structA, &structB, sizeof (structA));
memcpy(arrayA,arrayB,sizeof (arrayA));
memcpy(&structA, &databyte, 1);

char a[20]="hello";
memmove(a,a+2,5);
// a is now "llo"MEMMOVE()

Example Files: None

Also See: strcpy(), memset()

Built-In Functions

129

MEMSET()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory, value is a 8 bit int, n is a

8 bit int.

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware
that array names are pointers where other variable names
and structure names are not (and therefore need a & before
them).

Memmove performs a safe copy (overlapping objects doesn't
cause a problem). Copying takes place as if the n characters
from the source are first copied into a temporary array of n
characters that doesn't overlap the destination and source
objects, and then the n characters from the temporary array
are copied to destination.

Availability: All devices

Requires Nothing

Examples: memset(arrayA, 0, sizeof(arrayA));
memset(arrayB, '?', sizeof(arrayB));
memset(&structA, 0xFF, sizeof (structA));

Example Files: None

Also See: memcpy()

MODF()

Syntax: result= modf (value, & integral)

Parameters: value and integral are floats

Returns: result is a float

C Compiler Reference Manual

130

Function: The modf function breaks the argument value into integral
and fractional parts, each of which has the same sign as the
argument. It stores the integral part as a float in the object
integral.

Availability: All devices

Requires MATH.H must be included

Examples: float result, integral;
result=modf(123.987,&integral);
// result is .987 and integral is 123.0000

Example Files: None

Also See: None

OFFSETOF()
OFFSETOFBIT()

Syntax: value = offsetof(stype, field);

value = offsetofbit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the
indicated field. offsetof returns the offset in bytes and
offsetofbit returns the offset in bits.

Availability: All devices

Requires stddef.h

Built-In Functions

131

Examples: struct time_structure {

 int hour, min, sec;
 int zone : 4;
 short daylight_savings;
}

x = offsetof(time_structure, sec);
 // x will be 2
x = offsetofbit(time_structure, sec);
 // x will be 16
x = offsetof (time_structure,
 daylight_savings);
 // x will be 3
x = offsetofbit(time_structure,
 daylight_savings);
 // x will be 28

Example Files: None

Also See: None

OUTPUT_A()
OUTPUT_B()
OUTPUT_C()
OUTPUT_D()
OUTPUT_E()
OUTPUT_F()
OUTPUT_G()
OUTPUT_H()
OUTPUT_J()
OUTPUT_K()

Syntax: output_a (value)

output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

C Compiler Reference Manual

132

Parameters: value is a 8 bit int

Returns: undefined
Function: Output an entire byte to a port. The direction register is

changed in accordance with the last specified #USE *_IO
directive.

Availability: All devices, however not all devices have all ports (A-E)

Requires Nothing

Examples: OUTPUT_B(0xf0);

Example Files: ex_patg.c

Also See: input(), output_low(), output_high(), output_float(),
output_bit(), #use xxxx_io

OUTPUT_BIT()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is

a bit address. For example, port a (byte 5) bit 3 would have
a value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43. Value is a 1 or a 0.

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin.
The method of setting the direction register is
determined by the last #USE *_IO directive.

Availability: All devices.

Requires Pin constants are defined in the devices .h file

Built-In Functions

133

Examples: output_bit(PIN_B0, 0);

// Same as output_low(pin_B0);

output_bit(PIN_B0,input(PIN_B1));
// Make pin B0 the same as B1

output_bit(PIN_B0,
 shift_left(&data,1,input(PIN_B1)));
// Output the MSB of data to
// B0 and at the same time
// shift B1 into the LSB of data

Example Files: ex_extee.c with 9356.c

Also See: input(), output_low(), output_high(), output_float(),
output_x(), #use xxxx_io

OUTPUT_FLOAT()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a

bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the
pin to float high to represent a high on an open collector type
of connection.

Availability: All devices.

Requires Pin constants are defined in the devices .h file

C Compiler Reference Manual

134

Examples: if((data & 0x80)==0)

 output_low(pin_A0);
else
 output_float(pin_A0);

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output_x(),
#use xxxx_io

OUTPUT_HIGH()

Syntax: output_high (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

Returns: undefined

Function: Sets a given pin to the high state. The method of I/O used is
dependent on the last USE *_IO directive.

Availability: All devices.

Requires Pin constants are defined in the devices .h file

Examples: output_high(PIN_A0);

Example Files: ex_sqw.c

Also See: input(), output_low(), output_float(), output_high(),
output_bit(), output_x(), #use xxxx_io

Built-In Functions

135

OUTPUT_LOW()

Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a

bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/O used
is dependent on the last USE *_IO directive.

Availability: All devices.

Requires Pin constants are defined in the devices .h file

Examples: output_low(PIN_A0);

Example Files: ex_sqw.c

Also See: input(), output_high(), output_low(), output_float(),
 output_bit(), output_x(), #use xxxx_io

OUTPUT_TOGGLE()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value

is a bit address. For example, port a (byte 5) bit 3 would
have a value of 5*8+3 or 43. This is a defined as
follows: #define PIN_A3 43.

Returns: undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

C Compiler Reference Manual

136

Requires Pin constants are defined in the devices .h file

Examples: output_toggle(PIN_B4);

Example Files: None

Also See: Input(), output_high(), output_low(), output_bit(),
output_x()

PERROR()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null

terminated).

Returns: Nothing

Function: This function prints out to STDERR the supplied string and a
description of the last system error (usually a math error).

Availability: All devices.

Requires #use rs232, errno.h
Examples: x = sin(y);

if(errno!=0)
 perror("Problem in find_area");

Example Files: None

Also See: None

Built-In Functions

137

PORT_A_PULLUPS

Syntax: port_a_pullups (value)

Parameters: value is TRUE or FALSE on most parts, some parts that

allow pullups to be specified on individual pins permit an 8 bit
int here, one bit for each port pin.

Returns: undefined

Function: Sets the port A input pullups. TRUE will activate, and a
FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use
SETUP_COUNTERS on PCB parts).

Requires Nothing

Examples: port_a_pullups(FALSE);

Example Files: ex_lcdkb.c with kbd.c

Also See: input(), input_x(), output_float()

PORT_B_PULLUPS()

Syntax: port_b_pullups (value)

Parameters: value is TRUE or FALSE on most parts, some parts that

allow pullups to be specified on individual pins permit a 8 bit
int here, one bit for each port pin

Returns: undefined

Function: Sets the port B input pullups. TRUE will activate, and a
FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use
SETUP_COUNTERS on PCB parts).

C Compiler Reference Manual

138

Requires Nothing

Examples: port_b_pullups(FALSE);

Example Files: ex_lcdkb.c with kbd.c

Also See: input(), input_x(), output_float()

POW()
PWR()

Syntax: f = pow (x,y)

f = pwr (x,y)

Parameters: x and y and of type float

Returns: A float

Function: Calculates X to the Y power.

Note on error handling:
If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Range error occurs in the following case:
• pow: when the argument X is negative

Availability: All Devices

Requires #include <math.h>
Examples: area = (size,3.0);

Example Files: None

Also See: None

Built-In Functions

139

PRINTF()
FPRINTF()

Syntax: printf (string)

 or
printf (cstring, values...)
 or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null
terminated. Values is a list of variables separated by
commas, fname is a function name to be used for outputting
(default is putc is none is specified). Stream is a stream
identifier (a constant byte)

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232
pins (first two forms) or to a specified function. Formatting is
in accordance with the string argument. When variables are
used this string must be a constant. The % character is used
within the string to indicate a variable value is to be formatted
and output. Longs in the printf may be 16 or 32 bit. A %%
will output a single %. Formatting rules for the % follows.

If fprintf() is used then the specified stream is used where
printf() defaults to STDOUT (the last USE RS232).

Format:
The format takes the generic form %wt where w is optional
and may be 1-9 to specify how many characters are to be
outputted, or 01-09 to indicate leading zeros or 1.1 to 9.9 for
floating point. t is the type and may be one of the following:

C Character
S String or character
U Unsigned int
x Hex int (lower case output)
X Hex int (upper case output)
D Signed int

C Compiler Reference Manual

140

e Float in exp format
f Float
Lx Hex long int (lower case)
LX Hex long int (upper case)
lu unsigned decimal long
ld signed decimal long
% Just a %

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%x 12 fe
%X 12 FE
%4X 0012 00FE

 * Result is undefined - Assume garbage.

Availability: All Devices

Requires #use rs232 (unless fname is used)

Examples: byte x,y,z;
printf("HiThere");
printf("RTCCValue=>%2x\n\r",get_rtcc());
printf("%2u %X %4X\n\r",x,y,z);
printf(LCD_PUTC, "n=%u",n);

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example)

Built-In Functions

141

PSP_OUTPUT_FULL()
PSP_INPUT_FULL()
PSP_OVERFLOW()

Syntax: result = psp_output_full()

result = psp_input_full()
result = psp_overflow()

Parameters: None

Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Slave Port (PSP) for the
indicated conditions and return TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware
on chips.

Requires Nothing

Examples: while (psp_output_full()) ;
psp_data = command;
while(!psp_input_full()) ;
if (psp_overflow())
 error = TRUE;
else
 data = psp_data;

Example Files: ex_psp.c

Also See: setup_psp()

C Compiler Reference Manual

142

PUTC()
PUTCHAR()
FPUTC()

Syntax: putc (cdata)

putchar (cdata)
value = fputc(cdata, stream)

Parameters: cdata is a 8 bit character. Stream is a stream identifier (a
constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A
#USE RS232 must appear before this call to determine the
baud rate and pin used. The #USE RS232 remains in effect
until another is encountered in the file.

If fputc() is used then the specified stream is used where
putc() defaults to STDOUT (the last USE RS232).

Availability: All devices

Requires #use rs232

Examples: putc('*');
for(i=0; i<10; i++)
 putc(buffer[i]);
putc(13);

Example Files: ex_tgetc.c

Also See: getc(), printf(), #USE RS232

Built-In Functions

143

PUTS()
FPUTS()

Syntax: puts (string). value = fputs (string, stream)

Parameters: string is a constant string or a character array (null-

terminated). Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using
PUTC(). After the string is sent a RETURN (13) and LINE-
FEED (10) are sent. In general printf() is more useful than
puts().

If fputs() is used then the specified stream is used where
puts() defaults to STDOUT (the last USE RS232)

Availability: All devices

Requires #use rs232

Examples: puts(" ----------- ");
puts(" | HI | ");
puts(" ----------- ");

Example Files: None

Also See: printf(), gets()

C Compiler Reference Manual

144

QSORT()

Syntax: qsort (base, num, width, compar)

Parameters: base: Pointer to array of sort data

num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort
algorithm). The contents of the array are sorted into
ascending order according to a comparison function pointed
to by compar.

Availability: All devices

Requires #include <stdlib.h>

Examples: int nums[5]={ 2,3,1,5,4};
int compar(const void *arg1,const void *arg2);

void main() {
 qsort (nums, 5, sizeof(int), compar);
}

int compar(const void *arg1,const void *arg2) {
 if (* (int *) arg1 < (* (int *) arg2) return –1
 else if (* (int *) arg1 == (* (int *) arg2) return 0
 else return 1;
}

Example Files: None

Also See: bsearch()

Built-In Functions

145

RAND()

Syntax: re=rand()

Parameters: None

Returns: A pseudo-random integer.

Function: The rand function returns a sequence of pseudo-random

integers in the range of 0 to RAND_MAX.

Availability: All devices

Requires #include <STDLIB.H>

Examples: int I;
I=rand();

Example Files: None

Also See: srand()

READ_ADC()

Syntax: value = read_adc ([mode])

Parameters: mode is an optional parameter. If used the values may be:

ADC_START_AND_READ (this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC=
directive.

Function: This function will read the digital value from the analog to
digital converter. Calls to setup_adc(), setup_adc_ports() and
 set_adc_channel() should be made sometime before this
function is called. The range of the return value depends on
number of bits in the chips A/D converter and the setting in
the #DEVICE ADC= directive as follows:

C Compiler Reference Manual

146

#DEVCE 8 bit 10 bit 11 bit 16 bit
ADC=8 00-FF 00-FF 00-FF 00-FF
ADC=10 x 0-3FF x x
ADC=11 x x 0-7FF x
ADC=16 0-

FF00
0-FFC0 0-FFEO 0-FFFF

Note: x is not defined

Availability: This function is only available on devices with A/D hardware.

Requires Pin constants are defined in the devices .h file.

Examples: setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(1);
while (input(PIN_B0)) {
 delay_ms(5000);
 value = read_adc();
 printf("A/D value = %2x\n\r", value);
}

read_adc(ADC_START_ONLY);
sleep();
value=read_adc(ADC_READ_ONLY);

Example Files: ex_admm.c, ex_14kad.c

Also See: setup_adc(), set_adc_channel(), setup_adc_ports(),
#DEVICE

READ_BANK()

Syntax: value = read_bank (bank, offset)

Parameters: bank is the physical RAM bank 1-3 (depending on the

device), offset is the offset into user RAM for that bank
(starts at 0),

Returns: 8 bit int

Built-In Functions

147

Function: Read a data byte from the user RAM area of the specified

memory bank. This function may be used on some devices
where full RAM access by auto variables is not efficient. For
example on the PIC16C57 chip setting the pointer size to 5
bits will generate the most efficient ROM code however auto
variables can not be above 1Fh. Instead of going to 8 bit
pointers you can save ROM by using this function to write to
the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over
1Fh and PCM parts with memory over FFh.

Requires Nothing

Examples: // See write_bank example to see
// how we got the data
// Moves data from buffer to LCD
i=0;
do {
 c=read_bank(1,i++);
 if(c!=0x13)
 lcd_putc(c);
} while (c!=0x13);

Example Files: ex_psp.c

Also See: write_bank(), and the "Common Questions and Answers"
section for more information.

READ_CALIBRATION()

Syntax: value = read_calibration (n)

Parameters: n is an offset into calibration memory beginning at 0

Returns: An 8 bit byte

Function: The read_calibration function reads location "n" of the

14000-calibration memory.

C Compiler Reference Manual

148

Availability: This function is only available on the PIC14000.

Requires Nothing

Examples: fin = read_calibration(16);

Example Files: ex_14kad.c with 14kcal.c

Also See: None

READ_EEPROM()

Syntax: value = read_eeprom (address)

Parameters: address is an (8 bit or 16 bit depending on the part) int

Returns: An 8 bit int

Function: Reads a byte from the specified data EEPROM address.

The address begins at 0 and the range depends on the part.

Availability: This command is only for parts with built-in EEPROMS

Requires Nothing

Examples: #define LAST_VOLUME 10
volume = read_EEPROM (LAST_VOLUME);

Example Files: ex_intee.c

Also See: write_eeprom()

Built-In Functions

149

READ_PROGRAM_EEPROM ()

Syntax: value = read_program_eeprom (address)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts

Returns: 16 bits

Function: Reads data from the program memory.

Availability: Only devices that allow reads from program memory.

Requires Nothing

Examples: checksum = 0;

for(i=0;i<8196;i++)
 checksum^=read_program_eeprom(i);
printf("Checksum is %2X\r\n",checksum);

Example Files: None

Also See: write_program_eeprom(), write_eeprom(), read_eeprom()

READ_PROGRAM_MEMORY ()
READ_EXTERNAL_MEMORY ()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);

READ_EXTERNAL_MEMORY (address, dataptr, count);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts.
 The least significant bit should always be 0 in PCM.
 dataptr is a pointer to one or more bytes. count is a 8 bit
integer

Returns: undefined

Function: Reads count bytes from program memory at address to RAM
at dataptr. Both of these functions operate exactly the same.

C Compiler Reference Manual

150

Availability: Only devices that allow reads from program memory.

Requires Nothing

Examples: char buffer[64];
read_external_memory(0x40000, buffer, 64);

Example Files: None

Also See: WRITE_PROGRAM_MEMORY()

REALLOC()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc

or malloc or realloc function, size is an integer representing
the number of byes to be allocated.

Returns: A pointer to the possibly moved allocated memory, if any.
Returns null otherwise.

Function: The realloc function changes the size of the object pointed to
by the ptr to the size specified by the size. The contents of
the object shall be unchanged up to the lesser of new and
old sizes. If the new size is larger the value of the newly
allocated space is indeterminate. If ptr is a null pointer, the
realloc function behaves like malloc function for the specified
size. If the ptr does not match a pointer earlier returned by
the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior
is undefined. If the space cannot be allocated, the object
pointed to by ptr is unchanged. If size is zero and the ptr is
not a null pointer, the object is to be freed.

Availability: All devices

Requires STDLIBM.H must be included

Built-In Functions

151

Examples: int * iptr;

iptr=malloc(10);
realloc(ptr,20)
// iptr will point to a block of memory of 20 bytes,
if available.

Example Files: None

Also See: malloc(), free(), calloc()

RESET_CPU()

Syntax: reset_cpu()

Parameters: None

Returns: This function never returns

Function: This is a general purpose device reset. It will jump to

location 0 on PCB and PCM parts and also reset the
registers to power-up state on the PIC18XXX.

Availability: All devices

Requires Nothing

Examples: if(checksum!=0)
 reset_cpu();

Example Files: None

Also See: None

C Compiler Reference Manual

152

RESTART_CAUSE()

Syntax: value = restart_cause()

Parameters: None

Returns: A value indicating the cause of the last processor reset. The

actual values are device dependent. See the device .h file
for specific values for a specific device. Some example
values are: WDT_FROM_SLEEP, WDT_TIMEOUT,
MCLR_FROM_SLEEP and NORMAL_POWER_UP.

Function: This is a general purpose device reset. It will jump to
location 0 on PCB and PCM parts and also reset the
registers to power-up state on the PIC18XXX.

Availability: All devices

Requires Constants are defined in the devices .h file.

Examples: switch (restart_cause()) {
 case WDT_FROM_SLEEP:
 case WDT_TIMEOUT:
 handle_error();
}

Example Files: ex_wdt.c

Also See: restart_wdt(), reset_cpu()

RESTART_WDT()

Syntax: restart_wdt()

Parameters: None

Returns: undefined

Built-In Functions

153

Function: Restarts the watchdog timer. If the watchdog timer is

enabled, this must be called periodically to prevent the
processor from resetting.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and
software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:
 PCB/PCM PCH
Enable/Disable#fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt()restart_wdt()

Availability: All devices

Requires #fuses

Examples: #fuses WDT // PCB/PCM example
 // See setup_wdt for a PIC18 example
main() {
 setup_wdt(WDT_2304MS);
 while (TRUE) {
 restart_wdt();
 perform_activity();
 }
}

Example Files: ex_wdt.c

Also See:

#fuses, setup_wdt()

C Compiler Reference Manual

154

ROTATE_LEFT()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address
may be an array identifier or an address to a byte or
structure (such as &data). Bit 0 of the lowest BYTE in RAM
is considered the LSB.

Availability: All devices

Requires Nothing

Examples: x = 0x86;
rotate_left(&x, 1);
// x is now 0x0d

Example Files: None

Also See: rotate_right(), shift_left(), shift_right()

ROTATE_RIGHT()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address
may be an array identifier or an address to a byte or
structure (such as &data). Bit 0 of the lowest BYTE in RAM
is considered the LSB.

Built-In Functions

155

Availability: All devices

Requires Nothing

Examples: struct {
 int cell_1 : 4;
 int cell_2 : 4;
 int cell_3 : 4;
 int cell_4 : 4; } cells;
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
// cell_1->4, 2->1, 3->2 and 4-> 3

Example Files: None

Also See: rotate_left(), shift_left(), shift_right()

SET_ADC_CHANNEL()

Syntax: set_adc_channel (chan)

Parameters: chan is the channel number to select. Channel numbers

start at 0 and are labeled in the data sheet AN0, AN1

Returns: undefined
Function: Specifies the channel to use for the next READ_ADC call.

Be aware that you must wait a short time after changing the
channel before you can get a valid read. The time varies
depending on the impedance of the input source. In general
10us is good for most applications. You need not change
the channel before every read if the channel does not
change.

Availability: This function is only available on devices with A/D hardware.

Requires Nothing

Examples: set_adc_channel(2);
delay_us(10);
value = read_adc();

C Compiler Reference Manual

156

Example Files: ex_admm.c

Also See: read_adc(), setup_adc(), setup_adc_ports()

SET_PWM1_DUTY()
SET_PWM2_DUTY()
SET_PWM3_DUTY()
SET_PWM4_DUTY()
SET_PWM5_DUTY()

Syntax: set_pwm1_duty (value)

set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)
set_pwm5_duty (value)

Parameters: value may be an 8 or 16 bit constant or variable.

Returns: undefined

Function: Writes the 10-bit value to the PWM to set the duty. An 8-bit
value may be used if the least significant bits are not
required. If value is an 8 bit item it is shifted up with two zero
bits in the lsb positions to get 10 bits. The 10 bit value is
then used to determine the amount of time the PWM signal is
high during each cycle as follows:
• value*(1/clock)*t2div

Where clock is oscillator frequency and t2div is the timer 2
prescaler (set in the call to setup_timer2).

Availability: This function is only available on devices with CCP/PWM
hardware.

Requires Nothing

Built-In Functions

157

Examples: // For a 20 mhz clock, 1.2 khz frequency,

// t2DIV set to 16
// the following sets the duty to 50% (or 416 us).

long duty;

duty = 520; // .000416/(16*(1/20000000))
set_pwm1_duty(duty);

Example Files: ex_pwm.c

Also See: setup_ccpX()

SET_POWER_PWMX_DUTY()

Syntax: set_power_pwmX_duty(duty)

Parameters: X is 0, 2, 4, or 6

Duty is an integer between 0 and 16383.

Returns: undefined

Function: Stores the value of duty into the appropriate PDCXL/H
register. This duty value is the amount of time that the
PWM output is in the active state.

Availability: All devices equipped with PWM.

Requires None

Examples: set_power_pwm0_duty(4000);

Example Files: None

Also See: setup_power_pwm(), setup_power_pwm_pins(),
set_power_pwm_override()

C Compiler Reference Manual

158

SET_POWER_PWM_OVERRIDE()

Syntax: set_power_pwm_override(pwm, override, value)

Parameters: pwm is a constant between 0 and 7

Override is true or false
Value is 0 or 1

Returns: undefined

Function: pwm selects which module will be affected. override
determines whether the output is to be determined by
the OVDCONS register or the PDC registers. When
override is false, the PDC registers determine the
output. When override is true, the output is determined
by the value stored in OVDCONS. When value is a 1,
the PWM pin will be driven to its active state on the next
duty cycle. If value is 0, the pin will be inactive.

Availability: All devices equipped with PWM.

Requires None

Examples: set_power_pwm_override(1, true, 1);
 //PWM1 will be overridden to active state
set_power_pwm_override(1, false, 0);
 //PMW1 will not be overidden

Example Files: None

Also See: setup_power_pwm(), setup_power_pwm_pins(),
set_power_pwmX_duty()

Built-In Functions

159

SET_RTCC()
SET_TIMER0()
SET_TIMER1()
SET_TIMER2()
SET_TIMER3()
SET_TIMER4()
SET_TIMER5()

Syntax: set_timer0(value) or set_rtcc (value)

set_timer1(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters: Timers 1 & 3 get a 16 bit int.
Timer 2 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the
PIC18XXX where it needs a 16 bit int.

Returns: undefined

Function: Sets the count value of a real time clock/counter. RTCC and
Timer0 are the same. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2...)

Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires Nothing

C Compiler Reference Manual

160

Examples: // 20 mhz clock, no prescaler, set timer 0

// to overflow in 35us

set_timer0(81); // 256-(.000035/(4/20000000))

Example Files: ex_patg.c

Also See: set_timer1(), get_timerX()

SET_TRIS_A()
SET_TRIS_B()
SET_TRIS_C()
SET_TRIS_D()
SET_TRIS_E()
SET_TRIS_G()
SET_TRIS_H()
SET_TRIS_J()
SET_TRIS_K()

Syntax: set_tris_a (value)

set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters: value is an 8 bit int with each bit representing a bit of the I/O
port.

Returns: undefined

Built-In Functions

161

Function: These functions allow the I/O port direction (TRI-State)

registers to be set. This must be used with FAST_IO and
when I/O ports are accessed as memory such as when a
#BYTE directive is used to access an I/O port. Using the
default standard I/O the built in functions set the I/O direction
automatically.

Each bit in the value represents one pin. A 1 indicates the
pin is input and a 0 indicates it is output.

Availability: All devices (however not all devices have all I/O ports)
Requires Nothing

Examples: SET_TRIS_B(0x0F);

 // B7,B6,B5,B4 are outputs
 // B3,B2,B1,B0 are inputs

Example Files: lcd.c

Also See: #USE xxxx_IO

SET_UART_SPEED()

Syntax: set_uart_speed (baud, [stream])

Parameters: baud is a constant 100-115200 representing the number of

bits per second. stream is an optional stream identifier.

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial
port at run-time.

Each bit in the value represents one pin. A 1 indicates the
pin is input and a 0 indicates it is output.

Availability: This function is only available on devices with a built in
UART.

Requires #use rs232

C Compiler Reference Manual

162

Examples: // Set baud rate based on setting
// of pins B0 and B1

switch(input_b() & 3) {
 case 0 : set_uart_speed(2400); break;
 case 1 : set_uart_speed(4800); break;
 case 2 : set_uart_speed(9600); break;
 case 3 : set_uart_speed(19200); break;
}

Example Files: loader.c

Also See: #USE RS232, putc(), getc()

SETJMP()

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current

environment

Returns: If the return is from a direct invocation, this function
returns 0. If the return is from a call to the longjmp function, the
setjmp function return a nonzero value and it's the same value
passed to the longjmp function.

Function: Stores information on the current calling context in a data object
of type jmp_buf and which marks where you want control to
pass on a corresponding longjmp call.

Availability: All devices

Requires #include <setjmp.h>

Examples: result = setjmp(jmpbuf);

Example Files: None

Also See: longjmp()

Built-In Functions

163

SETUP_ADC(mode)

Syntax: setup_adc (mode);

Parameters: mode- Analog to digital mode. The valid options vary

depending on the device. See the devices .h file for all
options. Some typical options include:
• ADC_OFF
• ADC_CLOCK_INTERNAL
• ADC_CLOCK_DIV_32

Returns: undefined

Function: Configures the analog to digital converter.

Availability: Only the devices with built in analog to digital converter.

Requires Constants are defined in the devices .h file.

Examples: setup_adc_ports(ALL_ANALOG);
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);
value = read_adc();
setup_adc(ADC_OFF);

Example Files: ex_admm.c

Also See: setup_adc_ports(), set_adc_channel(), read_adc(), #device.
The device .h file.

C Compiler Reference Manual

164

SETUP_ADC_PORTS()

Syntax: setup_adc_ports (value)

Parameters: value - a constant defined in the devices .h file

Returns: undefined
Function: Sets up the ADC pins to be analog, digital or a combination.

The allowed combinations vary depending on the chip. The
constants used are different for each chip as well. Check the
device include file for a complete list. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips.
Some other example constants:
ANALOG_RA3_REF- All analog and RA3 is the reference
RA0_RA1_RA3_ANALOG- Just RA0, RA1 and RA3 are
analog

Availability: This function is only available on devices with A/D hardware.

Requires Constants are defined in the devices .h file.

Examples: // All pins analog (that can be)

setup_adc_ports(ALL_ANALOG);

// Pins A0, A1 and A3 are analog and all others
// are digital. The +5v is used as a reference.
setup_adc_ports(RA0_RA1_RA3_ANALOG);

// Pins A0 and A1 are analog. Pin RA3 is used
// for the reference voltage and all other pins
// are digital.
setup_adc_ports(A0_RA1_ANALOGRA3_REF);

Example Files: ex_admm.c

Also See: setup_adc(), read_adc(), set_adc_channel()

Built-In Functions

165

SETUP_CCP1()
SETUP_CCP2()
SETUP_CCP3()
SETUP_CCP4()
SETUP_CCP5()

Syntax: setup_ccp1 (mode)

setup_ccp2 (mode)
setup_ccp3 (mode)
setup_ccp4 (mode)
setup_ccp5 (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file
and are as follows:
Disable the CCP:
CCP_OFF

Set CCP to capture mode:

CCP_CAPTURE_FE Capture on falling edge
CCP_CAPTURE_RE Capture on rising edge
CCP_CAPTURE_DIV_4 Capture after 4 pulses
CCP_CAPTURE_DIV_16 Capture after 16 pulses

Set CCP to compare mode:

CCP_COMPARE_SET_ON_MATCH Output high on compare
CCP_COMPARE_CLR_ON_MATCH Output low on compare
CCP_COMPARE_INT interrupt on compare
CCP_COMPARE_RESET_TIMER Reset timer on compare

Set CCP to PWM mode:

CCP_PWM Enable Pulse Width Modulator
Returns: undefined

Function: Initialize the CCP. The CCP counters may be accessed

using the long variables CCP_1 and CCP_2. The CCP
operates in 3 modes. In capture mode it will copy the timer 1
count value to CCP_x when the input pin event occurs. In
compare mode it will trigger an action when timer 1 and
CCP_x are equal. In PWM mode it will generate a square
wave. The PCW wizard will help to set the correct mode and
timer settings for a particular application.

C Compiler Reference Manual

166

Availability: This function is only available on devices with CCP
hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_ccp1(CCP_CAPTURE_RE);

Example Files: ex_pwm.c, ex_ccpmp.c, ex_ccp1s.c

Also See: set_pwmX_duty()

SETUP_COMPARATOR()

Syntax: setup_comparator (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file

and are as follows:
A0_A3_A1_A2
A0_A2_A1_A2
NC_NC_A1_A2
NC_NC_NC_NC
A0_VR_A1_VR
A3_VR_A2_VR
A0_A2_A1_A2_OUT_ON_A3_A4
A3_A2_A1_A2

Returns: undefined

Function: Sets the analog comparator module. The above constants
have four parts representing the inputs: C1-, C1+, C2-, C2+

Availability: This function is only available on devices with an analog
comparator.

Requires Constants are defined in the devices .h file.

Examples: // Sets up two independent comparators (C1 and C2),
// C1 uses A0 and A3 as inputs (- and +), and C2
// uses A1 and A2 as inputs
setup_comparator(A0_A3_A1_A2);

Built-In Functions

167

Example Files: ex_comp.c

Also See: None

SETUP_COUNTERS()

Syntax: setup_counters (rtcc_state, ps_state)

Parameters: rtcc_state may be one of the constants defined in the

devices .h file. For example: RTCC_INTERNAL,
RTCC_EXT_L_TO_H or RTCC_EXT_H_TO_L

ps_state may be one of the constants defined in the devices
.h file.

For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8,
RTCC_DIV_16, RTCC_DIV_32, RTCC_DIV_64,
RTCC_DIV_128, RTCC_DIV_256, WDT_18MS,
WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

Returns: undefined

Function: Sets up the RTCC or WDT. The rtcc_state determines what
drives the RTCC. The PS state sets a prescaler for either
the RTCC or WDT. The prescaler will lengthen the cycle of
the indicated counter. If the RTCC prescaler is set the WDT
will be set to WDT_18MS. If the WDT prescaler is set the
RTCC is set to RTCC_DIV_1.

This function is provided for compatibility with older
versions. setup_timer_0 and setup_WDT are the
recommended replacements when possible. For PCB
devices if an external RTCC clock is used and a WDT
prescaler is used then this function must be used.

Availability: All devices

Requires Constants are defined in the devices .h file.

Examples: setup_counters (RTCC_INTERNAL, WDT_2304MS);

C Compiler Reference Manual

168

Example Files: None

Also See: setup_wdt(), setup_timer_0(), devices .h file

SETUP_EXTERNAL_MEMORY()

Syntax: SETUP_EXTERNAL_MEMORY(mode);

Parameters: mode is one or more constants from the device header file

OR'ed together.

Returns: undefined

Function: Sets the mode of the external memory bus.

Availability: Only devices that allow external memory.

Requires Device .h file.

Examples: setup_external_memory(EXTMEM_WORD_WRITE
 |EXTMEM_WAIT_0);
setup_external_memory(EXTMEM_DISABLE);

Example Files: None

Also See: WRITE_PROGRAM_EEPROM(),
WRITE_PROGRAM_MEMORY()

SETUP_LCD()

Syntax: setup_lcd (mode, prescale, [segments]);

Parameters: Mode may be one of these constants from the devices .h file:

LCD_DISABLED, LCD_STATIC,
LCD_MUX12,LCD_MUX13, LCD_MUX14

The following may be or'ed (via |) with any of the above:

STOP_ON_SLEEP, USE_TIMER_1
See the devices.h file for other device specific options

Built-In Functions

169

Prescale may be 0-15 for the LCD clock segments may be
any of the following constants or'ed together:

SEGO_4, SEG5_8, SEG9_11, SEG12_15,
SEG16_19, SEGO_28, SEG29_31, ALL_LCD_PINS

If omitted the compiler will enable all segments used in the
program.

Returns: undefined

Function: This function is used to initialize the 923/924 LCD controller.

Availability: Only devices with built in LCD drive hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_lcd(LCD_MUX14|STOP_ON_SLEEP,2);

Example Files: ex_92lcd.c

Also See: lcd_symbol(), lcd_load()

SETUP_LOW_VOLT_DETECT()

Syntax: setup_low_volt_detect(mode)

Parameters: mode may be one of the constants defined in the devices .h

file. LVD_LVDIN, LVD_45,
LVD_42, LVD_40, LVD_38, LVD_36, LVD_35, LVD_33,
LVD_30, LVD_28, LVD_27, LVD_25,
LVD_23, LVD_21, LVD_19

One of the following may be or’ed(via |) with the above if high
voltage detect is
also available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE.

C Compiler Reference Manual

170

Returns: undefined

Function: This function controls the high/low voltage detect module in

the device. The mode constants specifies the voltage trip
point and a direction of change from that point (available only
if high voltage detect module is included in the device). If the
device experiences a change past the trip point in the
specified direction the interrupt flag is set and if the interrupt
is enabled the execution branches to the interrupt service
routine.

Availability: This function is only available with devices that have the
high/low voltage detect module.

Requires Constants are defined in the devices.h file.

Examples: Constants are defined in the devices.h file.

SETUP_OSCILLATOR()

Syntax: setup_oscillator(mode, finetune)

Parameters: mode is dependent on the chip. For example, some

chips allow speed setting such as OSC_8MHZ or
OSC_32KHZ. Other chips permit changing the source
like OSC_TIMER1.

The finetune (only allowed on certain parts) is a signed
int with a range of -31 to +31.

Returns: Some chips return a state such as
OSC_STATE_STABLE to indicate the oscillator is
stable.

Built-In Functions

171

Function: This function controls and returns the state of the

internal RC oscillator on some parts. See the devices .h
file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses
and a #USE DELAY is used for a valid speed option,
then the compiler will do this setup automatically at the
start of main().

WARNING: If the speed is changed at run time the
compiler may not generate the correct delays for some
built in functions. The last #USE DELAY encountered in
the file is always assumed to be the correct speed. You
can have multiple #USE DELAY lines to control the
compilers knowledge about the speed.

Availability: Only parts with a OSCCON register.

Requires Constants are defined in the .h file.

Examples: setup_oscillator(OSC_2MHZ);

Example Files: None

Also See: #fuses

SETUP_POWER_PWM()

Syntax: setup_power_pwm(modes, postscale, time_base,

period, compare, compare_postscale, dead_time)

Parameters: modes values may be up to one from each group of the
following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_16,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_OFF, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

C Compiler Reference Manual

172

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER, PWM_DOWN_TRIGGER

PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value
sets the PWM time base output postscale.

time_base is an integer between 0 and 65535. This is
the initial value of the PWM base timer.

period is an integer between 0 and 4095. The PWM
time base is incremented until it reaches this number.

compare is an integer between 0 and 255. This is the
value that the PWM time base is compared to, to
determine if a special event should be triggered.

compare_postscale is an integer between 1 and 16.
This postscaler affects compare, the special events
trigger.

dead_time is an integer between 0 and 15. This value
specifies the length of an off period that should be
inserted between the going off of a pin and the going on
of it’s complementary pin.

Returns: undefined

Function: Initializes and configures the Pulse Width Modulation
(PWM) device.

Availability: All devices equipped with PWM.

Requires None

Built-In Functions

173

Examples: setup_power_pwm(PWM_CLOCK_DIV_4 | PWM_FREE_RUN |

 PWM_DEAD_CLOCK_DIV_4,1,10000,1000,0,1,0);

Example Files: None

Also See: set_power_pwm_override(), setup_power_pwm_pins(),
set_power_pwmX_duty()

SETUP_POWER_PWM_PINS()

Syntax: setup_power_pwm_pins(module0,module1,module2,mo

dule3)

Parameters: For each module (two pins) specify:
PWM_OFF, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY

Returns: undefined

Function: Configures the pins of the Pulse Width Modulation
(PWM) device.

Availability: All devices equipped with PWM.

Requires None

Examples: setup_power_pwm_pins(PWM_OFF, PWM_OFF, PWM_OFF,
 PWM_OFF);
setup_power_pwm_pins(PWM_COMPLEMENTARY,
 PWM_COMPLEMENTARY, PWM_OFF, PWM_OFF);

Example Files: None

Also See: setup_power_pwm(), set_power_pwm_override(),
set_power_pwmX_duty()

C Compiler Reference Manual

174

SETUP_PSP()

Syntax: setup_psp (mode)

Parameters: mode may be:

PSP_ENABLED
PSP_DISABLED

Returns: undefined

Function: Initializes the Parallel Slave Port (PSP). The
SET_TRIS_E(value) function may be used to set the data
direction. The data may be read and written to using the
variable PSP_DATA.

Availability: This function is only available on devices with PSP
hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_psp(PSP_ENABLED);

Example Files: ex_psp.c

Also See: set_tris_e()

SETUP_SPI()
SETUP_SPI2()

Syntax: setup_spi (mode)

setup_spi2 (mode)

Parameters: mode may be:
SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED
SPI_L_TO_H, SPI_H_TO_L
SPI_CLK_DIV_4, SPI_CLK_DIV_16,
SPI_CLK_DIV_64, SPI_CLK_T2

Constants from each group may be or'ed together with |.

Built-In Functions

175

Returns: undefined

Function: Initializes the Serial Port Interface (SPI). This is used for 2

or 3 wire serial devices that follow a common clock/data
protocol.

Availability: This function is only available on devices with SPI hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_spi(spi_master |spi_l_to_h |
 spi_clk_div_16);

Example Files: ex_spi.c

Also See: spi_write(), spi_read(), spi_data_is_in()

SETUP_TIMER_0 ()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the

devices .h file. RTCC_INTERNAL, RTCC_EXT_L_TO_H or
RTCC_EXT_H_TO_L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128,
RTCC_DIV_256

PIC18XXX only: RTCC_OFF, RTCC_8_BIT

One constant may be used from each group or'ed together
with the | operator.

Returns: undefined

Function: Sets up the timer 0 (aka RTCC).

Availability: All devices.

C Compiler Reference Manual

176

Requires Constants are defined in the devices .h file.

Examples: setup_timer_0 (RTCC_DIV_2|RTCC_EXT_L_TO_H);

Example Files: ex_stwt.c

Also See: get_timer0(), set_timer0(), setup_counters()

SETUP_TIMER_1()

Syntax: setup_timer_1 (mode)

Parameters: mode values may be:

T1_DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1_EXTERNAL_SYNC
T1_CLK_OUT
T1_DIV_BY_1, T1_DIV_BY_2, T1_DIV_BY_4,
T1_DIV_BY_8
constants from different groups may be or'ed
together with |.

Returns: undefined

Function: Initializes timer 1. The timer value may be read and written

to using SET_TIMER1() and GET_TIMER1()Timer 1 is a 16
bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8
mode, the timer will increment every 1.6us. It will overflow
every 104.8576ms.

Availability: This function is only available on devices with timer 1
hardware.

Requires Constants are defined in the devices .h file.

Built-In Functions

177

Examples: setup_timer_1 (T1_DISABLED);

setup_timer_1 (T1_INTERNAL | T1_DIV_BY_4);
setup_timer_1 (T1_INTERVAL | T1_DIV_BY_8);

Example Files: ex_patg.c

Also See: get_timer1()

SETUP_TIMER_2()

Syntax: setup_timer_2 (mode, period, postscale)

Parameters: mode may be one of:

T2_DISABLED, T2_DIV_BY_1,
T2_DIV_BY_4, T2_DIV_BY_16

period is a int 0-255 that determines when the clock value is
reset,

postscale is a number 1-16 that determines how many timer
resets before an interrupt: (1 means one reset, 2 means 2,
and so on).

Returns: undefined

Function: Initializes timer 2. The mode specifies the clock divisor (from
the oscillator clock). The timer value may be read and written
to using GET_TIMER2() and SET_TIMER2(). Timer 2 is a 8 bit
counter/timer.

Availability: This function is only available on devices with timer 2 hardware.

Requires Constants are defined in the devices .h file.

C Compiler Reference Manual

178

Examples: setup_timer_2 (T2_DIV_BY_4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,
// and will interrupt every 307.2us.

Example Files: ex_pwm.c

Also See: get_timer2(), set_timer2()

SETUP_TIMER_3()

Syntax: setup_timer_3 (mode)

Parameters: Mode may be one of the following constants from each

group or'ed (via |) together:
T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
T3_DIV_BY_1, T3_DIV_BY_2, T3_DIV_BY_4,
T3_DIV_BY_8

Returns: undefined

Function: Initializes timer 3 or 4. The mode specifies the clock divisor

(from the oscillator clock). The timer value may be read
and written to using GET_TIMER3() and SET_TIMER3().
Timer 3 is a 16 bit counter/timer.

Availability: This function is only available on PIC®18 devices.

Requires Constants are defined in the devices .h file.

Examples: setup_timer_3 (T3_INTERNAL | T3_DIV_BY_2);

Example Files: None

Also See: get_timer3(), set_timer3()

Built-In Functions

179

SETUP_TIMER_4()

Syntax: setup_timer_4 (mode, period, postscale)

Parameters: mode may be one of:

T4_DISABLED, T4_DIV_BY_1, T4_DIV_BY_4,
T4_DIV_BY_16

period is a int 0-255 that determines when the clock value is
reset,

postscale is a number 1-16 that determines how many timer
resets before an interrupt: (1 means one reset, 2 means 2,
and so on).

Returns: undefined

Function: Initializes timer 4. The mode specifies the clock divisor
(from the oscillator clock). The timer value may be read
and written to using GET_TIMER4() and SET_TIMER4().
Timer 4 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 4
hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_timer_4 (T4_DIV_BY_4, 0xc0, 2);
// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,
// and will interrupt every 460.3us.

Example Files: ex_pwm.c

Also See: get_timer4(), set_timer4()

C Compiler Reference Manual

180

SETUP_TIMER_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the

devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or
T5_EXTERNAL_SYNC

T5_DIV_BY_1, T5_DIV_BY_2, T5_DIV_BY_4,
T5_DIV_BY_8

T5_ONE_SHOT, T5_DISABLE_SE_RESET, or
T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor
(from the oscillator clock). The timer value may be read
and written to using GET_TIMER5() and
SET_TIMER5(). Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on PIC18XX31 devices.

Requires Constants are defined in the devices .h file.

Examples: setup_timer_5 (T5_INTERNAL | T5_DIV_BY_2)

Example Files: None

Also See: get_timer5(), set_timer5()

SETUP_UART()

Syntax: setup_uart(baud, stream)

setup_uart(baud)

Parameters: baud is a constant representing the number of bits per
second. A one or zero may also be passed to control the
on/off status. Stream is an optional stream identifier.

Built-In Functions

181

Chips with the advanced UART may also use the
following constants:
UART_ADDRESS UART only accepts data with 9th
bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following
constants:
 UART_AUTODETECT Waits for 0x55
character and sets the UART baud rate to match.

 UART_AUTODETECT_NOWAIT Same
as above function, except returns before 0x55 is
received. KBHIT() will be true when the match is made.
A call to GETC() will clear the character.

UART_WAKEUP_ON_RDA Wakes PIC up out of
sleep when RCV goes from high to low

Returns: undefined

Function: Very similar to SET_UART_SPEED. If 1 is passed as a
parameter, the UART is turned on, and if 0 is passed,
UART is turned off. If a BAUD rate is passed to it, the
UART is also turned on, if not already on.

Availability: This function is only available on devices with a built in
UART.

Requires #use rs232

Examples: setup_uart(9600);
setup_uart(9600, rsOut);

Example Files: None

Also See: #USE RS232, putc(), getc()

C Compiler Reference Manual

182

SETUP_VREF()

Syntax: setup_vref (mode | value)

Parameters: mode may be one of the following constants:

• FALSE (off)
• VREF_LOW for VDD*VALUE/24
• VREF_HIGH for VDD*VALUE/32 +
VDD/4
• any may be or'ed with VREF_A2.

value is an int 0-15.

Returns: undefined

Function: Establishes the voltage of the internal reference that may be
used for analog compares and/or for output on pin A2.

Availability: This function is only available on devices with VREF
hardware.

Requires Constants are defined in the devices .h file.

Examples: setup_vref (VREF_HIGH | 6);
// At VDD=5, the voltage is 2.19V

Example Files: ex_comp.c

Also See: None

Built-In Functions

183

SETUP_WDT ()

Syntax: setup_wdt (mode)

Parameters: For PCB/PCM parts: WDT_18MS, WDT_36MS,

WDT_72MS, WDT_144MS,WDT_288MS, WDT_576MS,
WDT_1152MS, WDT_2304MS

For PIC®18 parts: WDT_ON, WDT_OFF

Returns: undefined

Function: Sets up the watchdog timer.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and
software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:
 PCB/PCM PCH
Enable/Disable#fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt()restart_wdt()

Availability: All devices

Requires #fuses, Constants are defined in the devices .h file.

Examples: #fuses WDT1 // PIC18 example, See
 // restart_wdt for a PIC18 example
main() { // WDT1 means 18ms*1
 setup_wdt(WDT_ON);
 while (TRUE) {
 restart_wdt();
 perform_activity();
 }
}

Example Files: ex_wdt.c

Also See: #fuses, restart_wdt()

C Compiler Reference Manual

184

SHIFT_LEFT()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with, value is a 0 to 1 to be shifted
in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be
an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the
LSB.

Availability: All devices

Requires Nothing

Examples: byte buffer[3];
for(i=0; i<=24; ++i){
 // Wait for clock high
 while (!input(PIN_A2));
 shift_left(buffer,3,input(PIN_A3));
 // Wait for clock low
 while (input(PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example Files: ex_extee.c with 9356.c

Also See: shift_right(), rotate_right(), rotate_left(), <<, >>

Built-In Functions

185

SHIFT_RIGHT()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with, value is a 0 to 1 to be shifted
in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be
an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the
LSB.

Availability: All devices

Requires Nothing

Examples: // reads 16 bits from pin A1, each bit is read
// on a low to high on pin A2
struct {
 byte time;
 byte command : 4;
 byte source : 4;} msg;

for(i=0; i<=16; ++i) {
 while(!input(PIN_A2));
 shift_right(&msg,3,input(PIN_A1));
 while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN_A0, LSB first.
for(i=0;i<8;++i)
 output_bit(PIN_A0,shift_right(&data,1,0));

Example Files: ex_extee.c with 9356.c

Also See: shift_left(), rotate_right(), rotate_left(), <<, >>

C Compiler Reference Manual

186

SIN ()
COS()
TAN()
ASIN()
ACOS()
ATAN()
SINH()
COSH()
TANH()
ATAN2()

Syntax: val = sin (rad)

val = cos (rad)
val = tan (rad)
rad = asin (val)
rad1 = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0. Value is a float.

Returns: rad is a float representing an angle in Radians -pi/2 to pi/2

val is a float with the range -1.0 to 1.0.

rad1 is a float representing an angle in Radians 0 to pi

rad2 is a float representing an angle in Radians -pi to pi
Result is a float

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in

radians)
cos returns the cosine value of the parameter (measured in

radians)
tan returns the tangent value of the parameter (measured

in radians)

Built-In Functions

187

asin returns the arc sine value in the range [-pi/2,+pi/2]
radians

acos returns the arc cosine value in the range[0,pi] radians
atan returns the arc tangent value in the range [-pi/2,+pi/2]

radians
atan2returns the arc tangent of y/x in the range [-pi,+pi]

radians
sinh returns the hyperbolic sine of x
cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:
If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability: All devices

Requires math.h must be included.

Examples: float phase;
// Output one sine wave
for(phase=0; phase<2*3.141596; phase+=0.01)
 set_analog_voltage(sin(phase)+1);

Example Files: ex_tank.c

Also See: log(), log10(), exp(), pow(), sqrt()

C Compiler Reference Manual

188

SINH()

See: SIN()

SLEEP()

Syntax: sleep()

Parameters: None

Returns: Undefined

Function: Issues a SLEEP instruction. Details are device dependent

however in general the part will enter low power mode and
halt program execution until woken by specific external
events. Depending on the cause of the wake up execution
may continue after the sleep instruction. The compiler
inserts a sleep() after the last statement in main().

Availability: All devices

Requires Nothing

Examples: SLEEP();

Example Files: ex_wakup.c

Also See: reset_cpu()

SPI_DATA_IS_IN()
SPI_DATA_IS_IN2()

Syntax: result = spi_data_is_in()

result = spi_data_is_in2()

Parameters: None

Returns: 0 (FALSE) or 1 (TRUE)

Built-In Functions

189

Function: Returns TRUE if data has been received over the SPI.
Availability: This function is only available on devices with SPI hardware.

Requires Nothing

Examples: while(!spi_data_is_in() && input(PIN_B2));

if(spi_data_is_in())
 data = spi_read();

Example Files: None

Also See: spi_read(), spi_write()

SPI_READ()
SPI_READ2()

Syntax: value = spi_read (data)

value = spi_read2 (data)

Parameters: data is optional and if included is an 8 bit int.

Returns: An 8 bit int

Function: Return a value read by the SPI. If a value is passed to
SPI_READ the data will be clocked out and the data
received will be returned. If no data is ready, SPI_READ will
wait for the data.

If this device supplies the clock then either do a
SPI_WRITE(data) followed by a SPI_READ() or do a
SPI_READ(data). These both do the same thing and will
generate a clock. If there is no data to send just do a
SPI_READ(0) to get the clock.

If the other device supplies the clock then either call
SPI_READ() to wait for the clock and data or use
SPI_DATA_IS_IN() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.

Requires Nothing

C Compiler Reference Manual

190

Examples: in_data = spi_read(out_data);

Example Files: ex_spi.c

Also See: spi_data_is_in(), spi_write()

SPI_WRITE()
SPI_WRITE2()

Syntax: SPI_WRITE (value)

SPI_WRITE2 (value)

Parameters: value is an 8 bit int

Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks
to be generated. This function will write the value out to the
SPI.

Availability: This function is only available on devices with SPI hardware.

Requires Nothing

Examples: spi_write(data_out);
data_in = spi_read();

Example Files: ex_spi.c

Also See: spi_read(), spi_data_is_in()

Built-In Functions

191

SPRINTF()

Syntax: sprintf(string, cstring, values...);

Parameters: string is an array of characters.

cstring is a constant string or an array of characters null
terminated. Values are a list of variables separated by
commas.

Returns: Nothing

Function: This function operates like printf except that the output is
placed into the specified string. The output string will be
terminated with a null. No checking is done to ensure the
string is large enough for the data. See printf() for details on
formatting.

Availability: All devices.

Requires Nothing

Examples: char mystring[20];
long mylong;

mylong=1234;
sprintf(mystring,"<%lu>",mylong);
// mystring now has:
// < 1 2 3 4 > \0

Example Files: None

Also See: printf()

SQRT()

Syntax: result = sqrt (value)

Parameters: value is a float

Returns: A float

C Compiler Reference Manual

192

Function: Computes the non-negative square root of the float x. If the
argument is negative, the behavior is undefined.

Note on error handling:
If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to
see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
sqrt: when the argument is negative

Availability: All devices.

Requires #include <math.h>

Examples: distance = sqrt(sqr(x1-x2) + sqr(y1-y2));

Example Files: None

Also See: None

SRAND()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random

numbers to be returned by subsequent calls to rand.

Returns: No value.

Function: The srand function uses the argument as a seed for a new
sequence of pseudo-random numbers to be returned by
subsequent calls to rand. If srand is then called with same
seed value, the sequence of random numbers shall be
repeated. If rand is called before any call to srand have been
made, the same sequence shall be generated as when srand
is first called with a seed value of 1.

Built-In Functions

193

Availability: All devices.

Requires #include <STDLIB.H>

Examples: srand(10);
I=rand();

Example Files: None

Also See: rand()

STANDARD STRING FUNCTIONS
MEMCHR()
MEMCMP()
STRCAT()
STRCHR()
STRCMP()
STRCOLL()
STRCSPN()
STRICMP()
STRLEN()
STRLWR()
STRNCAT()
STRNCMP()
STRNCPY()
STRPBRK()
STRRCHR()
STRSPN()
STRSTR()
STRXFRM()

Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1

ptr=strchr (s1, c) Find c in s1 and return
&s1[i]

ptr=strrchr (s1, c) Same but search in
reverse

cresult=strcmp (s1, s2) Compare s1 to s2

C Compiler Reference Manual

194

iresult=strncmp (s1, s2, n) Compare s1 to s2 (n
bytes)

iresult=stricmp (s1, s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters

s2->s1
iresult=strcspn (s1, s2) Count of initial chars in s1

not in s2
iresult=strspn (s1, s2) Count of initial chars in s1

also in s2
iresult=strlen (s1) Number of characters in s1

ptr=strlwr (s1) Convert string to lower case

ptr=strpbrk (s1, s2) Search s1 for first char also
in s2

ptr=strstr (s1, s2) Search for s2 in s1

ptr=strncat(s1,s2) Concatenates up to n bytes
of s2 onto s1

iresult=strcoll(s1,s2) Compares s1 to s2, both
interpreted as appropriate to
the current locale.

res=strxfrm(s1,s2,n) Transforms maximum of n
characters of s2 and places
them in s1, such that
strcmp(s1,s2) will give the
same result as strcoll(s1,s2)

iresult=memcmp(m1,m2,n) Compare m1 to m2 (n bytes)

ptr=memchr(m1,c,n) Find c in first n characters of
m1 and return &m1[i]

Parameters: s1 and s2 are pointers to an array of characters (or the name
of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi").

n is a count of the maximum number of character to operate
on.

c is a 8 bit character

m1 and m2 are pointers to memory.

Returns: ptr is a copy of the s1 pointer
iresult is an 8 bit int
result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Built-In Functions

195

Function: Functions are identified above.

Availability: All devices.

Requires #include <string.h>

Examples: char string1[10], string2[10];

strcpy(string1,"hi ");
strcpy(string2,"there");
strcat(string1,string2);

printf("Length is %u\r\n", strlen(string1));
 // Will print 8

Example Files: ex_str.c

Also See: strcpy(), strtok()

STRCPY()
STRCOPY()

Syntax: strcpy (dest, src)

strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it
may be a constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings
are terminated with a 0.

Availability: All devices.

Requires Nothing

C Compiler Reference Manual

196

Examples: char string[10], string2[10];

.

.

.
strcpy (string, "Hi There");

strcpy(string2,string);

Example Files: ex_str.c

Also See: strxxxx()

STRTOD()

Syntax: result=strtod(nptr,& endptr)

Parameters: nptr and endptr are strings

Returns: result is a float.

returns the converted value in result, if any. If no conversion
could be performed, zero is returned.

Function: The strtod function converts the initial portion of the string
pointed to by nptr to a float representation. The part of the
string after conversion is stored in the object pointed to
endptr, provided that endptr is not a null pointer. If nptr is
empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires STDLIB.H must be included

Examples: float result;
char str[2]="123.45hello";
char *ptr;
result=strtod(str,&ptr);
//result is 123.45 and ptr is "hello"

Built-In Functions

197

Example Files: None

Also See: strtol(), strtoul()

STRTOK()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the name

of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi"). s1 may be 0 to indicate a continue
operation.

Returns: ptr points to a character in s1 or is 0

Function: Finds next token in s1 delimited by a character from
separator string s2 (which can be different from call to call),
and returns pointer to it.

First call starts at beginning of s1 searching for the first
character NOT contained in s2 and returns null if there is
none are found.

If none are found, it is the start of first token (return value).
Function then searches from there for a character contained
in s2.

If none are found, current token extends to the end of s1,
and subsequent searches for a token will return null.

If one is found, it is overwritten by '\0', which terminates
current token. Function saves pointer to following character
from which next search will start.

Each subsequent call, with 0 as first argument, starts
searching from the saved pointer.

Availability: All devices.

Requires #include <string.h>

C Compiler Reference Manual

198

Examples: char string[30], term[3], *ptr;

strcpy(string,"one,two,three;");
strcpy(term,",;");

ptr = strtok(string, term);
while(ptr!=0) {
 puts(ptr);
 ptr = strtok(0, term);
 }
 // Prints:
 one
 two
 three

Example Files: ex_str.c

Also See: strxxxx(), strcpy()

 STRTOL()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is a signed long int.

returns the converted value in result , if any. If no conversion
could be performed, zero is returned.

Function: The strtol function converts the initial portion of the string
pointed to by nptr to a signed long int representation in some
radix determined by the value of base. The part of the string
after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or
does not have the expected form, no conversion is
performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires STDLIB.H must be included

Built-In Functions

199

Examples: signed long result;

char str[2]="123hello";
char *ptr;
result=strtol(str,&ptr,10);
//result is 123 and ptr is "hello"

Example Files: None

Also See: strtod(), strtoul()

STRTOUL()

Syntax: result=strtoul(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is an unsigned long int.

returns the converted value in result , if any. If no conversion
could be performed, zero is returned.

Function: The strtoul function converts the initial portion of the string
pointed to by nptr to a long int representation in some radix
determined by the value of base. The part of the string after
conversion is stored in the object pointed to endptr, provided
that endptr is not a null pointer. If nptr is empty or does not
have the expected form, no conversion is performed and the
value of nptr is stored in the object pointed to by endptr,
provided endptr is not a null pointer.

Availability: All devices.

Requires STDLIB.H must be included

Examples: long result;
char str[2]="123hello";
char *ptr;
result=strtoul(str,&ptr,10);
//result is 123 and ptr is "hello"

C Compiler Reference Manual

200

Example Files: None

Also See: strtol(), strtod()

SWAP()

Syntax: swap (lvalue)

Parameters: lvalue is a byte variable

Returns: undefined - WARNING: this function does not return the

result
Function: Swaps the upper nibble with the lower nibble of the specified

byte. This is the same as:
byte = (byte << 4) | (byte >> 4);

Availability: All devices.

Requires Nothing

Examples: x=0x45;
swap(x);
//x now is 0x54

Example Files: None

Also See: rotate_right(), rotate_left()

TAN()

See: SIN()

TANH()

See: SIN()

Built-In Functions

201

TOLOWER()
TOUPPER()

Syntax: result = tolower (cvalue)

result = toupper (cvalue)

Parameters: cvalue is a character

Returns: An 8 bit character

Function: These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a'..'z' for X in 'A'..'Z' and all other
characters are unchanged. TOUPPER(X) will return 'A'..'Z'
for X in 'a'..'z' and all other characters are unchanged.

Availability: All devices.

Requires Nothing

Examples: switch(toupper(getc())) {
 case 'R' : read_cmd(); break;
 case 'W' : write_cmd(); break;
 case 'Q' : done=TRUE; break;
}

Example Files: ex_str.c

Also See: None

WRITE_BANK()

Syntax: write_bank (bank, offset, value)

Parameters: bank is the physical RAM bank 1-3 (depending on the

device), offset is the offset into user RAM for that bank
(starts at 0), value is the 8 bit data to write

Returns: undefined

C Compiler Reference Manual

202

Function: Write a data byte to the user RAM area of the specified

memory bank. This function may be used on some devices
where full RAM access by auto variables is not efficient. For
example on the PIC16C57 chip setting the pointer size to 5
bits will generate the most efficient ROM code however auto
variables can not be above 1Fh. Instead of going to 8 bit
pointers you can save ROM by using this function to write to
the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over
1Fh and PCM parts with memory over FFh.

Requires Nothing

Examples: i=0; // Uses bank 1 as a RS232 buffer
do {
 c=getc();
 write_bank(1,i++,c);
} while (c!=0x13);

Example Files: ex_psp.c

Also See: See the "Common Questions and Answers" section for more
information.

WRITE_EEPROM()

Syntax: write_eeprom (address, value)

Parameters: address is a (8 bit or 16 bit depending on the part) int, the

range is device dependent, value is an 8 bit int

Returns: undefined

Built-In Functions

203

Function: Write a byte to the specified data EEPROM address. This

function may take several milliseconds to execute. This
works only on devices with EEPROM built into the core of
the device.

For devices with external EEPROM or with a separate
EEPROM in the same package (line the 12CE671) see
EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

Availability: This function is only available on devices with supporting
hardware on chip.

Requires Nothing

Examples: #define LAST_VOLUME 10 // Location in EEPROM

volume++;
write_eeprom(LAST_VOLUME,volume);

Example Files: ex_intee.c

Also See: read_eeprom(), write_program_eeprom(),
read_program_eeprom(), EX_EXTEE.c with CE51X.c,
CE61X.c or CE67X.c.

WRITE_EXTERNAL_MEMORY()

Syntax: write_external_memory(address, dataptr, count)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts

adataptr is a pointer to one or more bytes
count is a 8 bit integer

Returns: undefined

C Compiler Reference Manual

204

Function: Writes count bytes to program memory from dataptr to

address. Unlike WRITE_PROGRAM_EEPROM and
WRITE_PROGRAM_EEPROM this function does not use
any special EEPROM/FLASH write algorithm. The data is
simply copied from register address space to program
memory address space. This is useful for external RAM or
to implement an algorithm for external flash.

Availability: Only PCH devices.

Requires Nothing

Examples: for(i=0x1000;i<=0x1fff;i++) {
 value=read_adc();
 write_external_memory(i, value, 2);
 delay_ms(1000);
}

Example Files: loader.c

Also See: write_program_memory(), read_external_memory()

WRITE_PROGRAM_EEPROM ()

Syntax: write_program_eeprom (address, data)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts,

data is 16 bits. The least significant bit should always be 0
in PCH.

Returns: undefined

Function: Writes to the specified program EEPROM area.

See our WRITE_PROGRAM_MEMORY for more information
on this function.

Availability: Only devices that allow writes to program memory.

Requires Nothing

Built-In Functions

205

Examples: write_program_eeprom(0,0x2800); //disables program

Example Files: ex_load.c, loader.c

Also See: read_program_eeprom(), read_eeprom(), write_eeprom(),
write_program_memory(), erase_program_eeprom()

WRITE_PROGRAM_MEMORY()

Syntax: write_program_memory(address, dataptr, count);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts.

dataptr is a pointer to one or more bytes count is a 8 bit
integer

Returns: undefined

Function: Writes count bytes to program memory from dataptr to
address. This function is most effective when count is a
multiple of FLASH_WRITE_SIZE. Whenever this function is
about to write to a location that is a multiple of
FLASH_ERASE_SIZE then an erase is performed on the
whole block.

Availability: Only devices that allow writes to program memory.

Requires Nothing

Examples: for(i=0x1000;i<=0x1fff;i++) {
 value=read_adc();
 write_program_memory(i, value, 2); delay_ms(1000);
}

Example Files: loader.c

Also See: write_program_eeprom, erase_program_eeprom

C Compiler Reference Manual

206

Additional
Notes:

Clarification about the functions to write to program memory:
For chips where
getenv(“FLASH_ERASE_SIZE”)>getenv(“FLASH_WRITE_SIZE”)
WRITE_PROGRAM_EEPROM

Writes 2 bytes, does not erase
(use ERASE_PROGRAM_EEPROM)

WRITE_PROGRAM_MEMORY
Writes any number of bytes, will erase a block
whenever the first (lowest) byte in a block is
written to. If the first address is not the
start of a block that block is not erased.

ERASE_PROGRAM_EEPROM
Will erase a block. The lowest address bits
are not used.

For chips where
getenv(“FLASH_ERASE_SIZE”) = (“FLASH_WRITE_SIZE”)
WRITE_PROGRAM_EEPROM

Writes 2 bytes, no erase is needed.
WRITE_PROGRAM_MEMORY
Writes any number of bytes, bytes outside the range of the write
block are not changed. No erase is needed.
ERASE_PROGRAM_EEPROM

Not available

207

Standard C Definitions

errno.h

errno.h
EDOM Domain error value
ERANGE Range error value
errno error value

float.h

float.h
FLT_RADIX: Radix of the exponent representation
FLT_MANT_DIG: Number of base digits in the floating point significant
FLT_DIG: Number of decimal digits, q, such that any floating point

number with q decimal digits can be rounded into a
floating point number with p radix b digits and back again
without change to the q decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalized floating-point number.

FLT_MIN_10_EXP: Minimum negative integer such that 10 raised to that
power is in the range of normalized floating-point
numbers.

FLT_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to
that power minus 1 is a representable finite floating-point
number.

FLT_MAX_10_EXP: Maximum negative integer such that 10 raised to that
power is in the range representable finite floating-point
numbers.

FLT_MAX: Maximum representable finite floating point number.
FLT_EPSILON: The difference between 1 and the least value greater than

1 that is representable in the given floating point type.
FLT_MIN: Minimum normalized positive floating point number.
DBL_MANT_DIG: Number of base digits in the floating point significant
DBL_DIG: Number of decimal digits, q, such that any floating point

number with q decimal digits can be rounded into a
floating point number with p radix b digits and back again
without change to the q decimal digits.

C Compiler Reference Manual

208

DBL_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalized floating-point number.

DBL_MIN_10_EXP: Minimum negative integer such that 10 raised to that
power is in the range of normalized floating-point
numbers.

DBL_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to
that power minus 1 is a representable finite floating-point
number.

DBL_MAX_10_EXP: Maximum negative integer such that 10 raised to that
power is in the range of representable finite floating-point
numbers.

DBL_MAX: Maximum representable finite floating point number.
DBL_EPSILON: The difference between 1 and the least value greater than

1 that is representable in the given floating point type.
DBL_MIN: Minimum normalized positive floating point number.
LDBL_MANT_DIG: Number of base digits in the floating point significant
LDBL_DIG: Number of decimal digits, q, such that any floating point

number with q decimal digits can be rounded into a
floating point number with p radix b digits and back again
without change to the q decimal digits.

LDBL_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalized floating-point number.

LDBL_MIN_10_EXP: Minimum negative integer such that 10 raised to that
power is in the range of normalized floating-point
numbers.

LDBL_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to
that power minus 1 is a representable finite floating-point
number.

LDBL_MAX_10_EXP: Maximum negative integer such that 10 raised to that
power is in the range of representable finite floating-point
numbers.

LDBL_MAX: Maximum representable finite floating point number.
LDBL_EPSILON: The difference between 1 and the least value greater than

1 that is representable in the given floating point type.
LDBL_MIN: Minimum normalized positive floating point number.

Compiler Error Messages

209

limits.h

limits.h
CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG_MAX: Maximum value for an object of type unsigned long int

locale.h

locale.h
locale.h (Localization not supported)
lconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale

setjmp.h

setjmp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point

C Compiler Reference Manual

210

stddef.h

stddef.h
ptrdiff_t: The basic type of a pointer
size_t: The type of the sizeof operator (int)
wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stdio.h
stderr The standard error stream (USE RS232 specified as stream or the first

USE RS232)
stdout The standard output stream (USE RS232 specified as stream last USE

RS232)
stdin The standard input stream (USE RS232 specified as stream last USE

RS232)

stdlib.h

 stdlib.h
div_t structure type that contains two signed integers(quot and rem).
ldiv_t structure type that contains two signed longs(quot and rem
EXIT_FAILURE returns 1
EXIT_SUCCESS returns 0
RAND_MAX-
MBCUR_MAX- 1
SYSTEM() Returns 0(not supported)
Multibyte
character and
string functions:

Multibyte characters not supported

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.
WCTOMB() Returns 1.
MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Compiler Error Messages

211

Compiler Error Messages

#ENDIF WITH NO CORRESPONDING #IF
Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line
The compiler requires a #device before it encounters any statement or compiler
directive that may cause it to generate code. In general #defines may appear
before a #device but not much more.

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code.
 Some expression that will evaluate to a value.

Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the
record size is always rounded up to the next byte boundary.

Attempt to create a pointer to a constant
Constant tables are implemented as functions. Pointers cannot be created to
functions. For example CHAR CONST MSG[9]={"HI THERE"}; is permitted,
however you cannot use &MSG. You can only reference MSG with subscripts
such as MSG[i] and in some function calls such as Printf and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)
An attempt was made to apply #INLINE or #SEPARATE to something other than
a function.

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.

Baud rate out of range
The compiler could not create code for the specified baud rate. If the internal
UART is being used the combination of the clock and the UART capabilities
could not get a baud rate within 3% of the requested value. If the built in UART
is not being used then the clock will not permit the indicated baud rate. For fast
baud rates, a faster clock will be required.

C Compiler Reference Manual

212

BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a
SHORT INT.

Cannot change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific.
 Move the #DEVICE to an area before code is generated.

Character constant constructed incorrectly
Generally this is due to too many characters within the single quotes. For
example 'ab' is an error as is '\nr'. The backslash is permitted provided the result
is a single character such as '\010' or '\n'.

Constant out of the valid range
This will usually occur in inline assembly where a constant must be within a
particular range and it is not. For example BTFSC 3,9 would cause this error
since the second operand must be from 0-8.

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure
the DEFINE is not recursively defined.

Define syntax error
This is usually caused by a missing or mis-placed (or) within a define.

Demo period has expired
Please contact CCS to purchase a licensed copy.

Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with
a parameter that is not a variable. Usually calling with a constant causes this.

Divide by zero
An attempt was made to divide by zero at compile time using constants.

Duplicate case value
Two cases in a switch statement have the same value.

Duplicate DEFAULT statements
The DEFAULT statement within a SWITCH may only appear once in each
SWITCH. This error indicates a second DEFAULT was encountered.

Compiler Error Messages

213

Duplicate #define
The identifier in the #define has already been used in a previous #define. To
redefine an identifier use #UNDEF first. To prevent defines that may be included
from multiple source do something like:
· #ifndef ID
· #define ID text
· #endif

Duplicate function
A function has already been defined with this name. Remember that the
compiler is not case sensitive unless a #CASE is used.

Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the
#INT_RB may only appear once in each program.

Duplicate USE
Some USE libraries may only be invoked once since they apply to the entire
program such as #USE DELAY. These may not be changed throughout the
program.

Element is not a member
A field of a record identified by the compiler is not actually in the record. Check
the identifier spelling.

ELSE with no corresponding IF
Compiler found an ELSE statement without a corresponding IF. Make sure the
ELSE statement always match with the previous IF statement.

End of file while within define definition
The end of the source file was encountered while still expanding a define. Check
for a missing).

End of source file reached without closing comment */ symbol
The end of the source file has been reached and a comment (started with /*) is
still in effect. The */ is missing.

Expect ;
Expect }
Expect comma
Expect WHILE
Expecting :
Expecting =

C Compiler Reference Manual

214

Expecting a (
Expecting a , or)
Expecting a , or }
Expecting a .
Expecting a ; or ,
Expecting a ; or {
Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting a]
Expecting a {
Expecting an =
Expecting an array
Expecting an identifier
Expecting function name
Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.

Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For
example 4=5; will give this error.

Expecting a basic type
Examples of a basic type are INT and CHAR.

Expression must be a constant or simple variable
The indicated expression must evaluate to a constant at compile time. For
example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted. If X
were a DEFINE that had a constant value then it is permitted.

Expression must evaluate to a constant
The indicated expression must evaluate to a constant at compile time. For
example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted. If X
were a DEFINE that had a constant value then it is permitted.

Expression too complex
This expression has generated too much code for the compiler to handle for a
single expression. This is very rare but if it happens, break the expression up
into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact
CCS to increase the internal limits.

Compiler Error Messages

215

Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that
directive. Preprocessor commands own the entire line unlike the normal C
syntax. For example the following is an error:
 #PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened
Check the filename and the current path. The file could not be opened.

File cannot be opened for write
The operating system would not allow the compiler to create one of the output
files. Make sure the file is not marked READ ONLY and that the compiler
process has write privileges to the directory and file.

Filename must start with " or <
The correct syntax of a #include is one of the following two formats:
 #include "filename.ext"
 #include <filename.ext>
This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:' '
The filename specified in a #include must terminate with a " if it starts with a ". It
must terminate with a > if it starts with a <.

Floating-point numbers not supported for this operation
A floating-point number is not permitted in the operation near the error. For
example, ++F where F is a float is not allowed.

Function definition different from previous definition
This is a mis-match between a function prototype and a function definition. Be
sure that if a #INLINE or #SEPARATE are used that they appear for both the
prototype and definition. These directives are treated much like a type specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.

Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.

Illegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

C Compiler Reference Manual

216

Improper use of a function identifier
Function identifiers may only be used to call a function. An attempt was made to
otherwise reference a function. A function identifier should have a (after it.

Incorrectly constructed label
This may be an improperly terminated expression followed by a label. For
example:
x=5+
MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached
The program is using too much of something. An internal compiler limit was
reached. Contact CCS and the limit may be able to be expanded.

Interrupt handler uses too much stack
Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT
In this case, a LONG INT cannot be converted to an INT. You can type cast the
LONG INT to perform a truncation. For example:
I = INT(LI);

Internal Error - Contact CCS
This error indicates the compiler detected an internal inconsistency. This is not
an error with the source code; although, something in the source code has
triggered the internal error. This problem can usually be quickly corrected by
sending the source files to CCS so the problem can be re-created and corrected.

In the meantime if the error was on a particular line, look for another way to
perform the same operation. The error was probably caused by the syntax of the
identified statement. If the error was the last line of the code, the problem was in
linking. Look at the call tree for something out of the ordinary.

Invalid parameters to built in function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression
that evaluates to a constant to specify the number of bytes.

Compiler Error Messages

217

Invalid ORG range
The end address must be greater than or equal to the start address. The range
may not overlap another range. The range may not include locations 0-3. If only
one address is specified it must match the start address of a previous #org.

Invalid Pre-Processor directive
The compiler does not know the preprocessor directive. This is the identifier in
one of the following two places:
#xxxxx
#PRAGMA xxxxx

Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the
compiler. Check the spelling.

Linker option not compatible with prior options
Conflicting linker options are specified. For example using both the EXCEPT=
and ONLY= options in the same directive is not legal.

LVALUE required
This error will occur when a constant is used where a variable should be. For
example 4=5; will give this error.

Macro identifier requires parameters
A #DEFINE identifier is being used but no parameters were specified, as
required. For example:
#define min(x,y) ((x<y)?x:y)
When called MIN must have a (--,--) after it such as:
r=min(value, 6);

Macro is defined recursively
A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF
A #IF was found without a corresponding #ENDIF.

Missing or invalid .CRG file
The user registration file(s) are not part of the download software. In order for
the software to run the files must be in the same directory as the .EXE files.
 These files are on the original diskette, CD ROM or e-mail in a non-compressed
format. You need only copy them to the .EXE directory. There is one .REG file
for each compiler (PCB.REG, PCM.REG and PCH.REG).

C Compiler Reference Manual

218

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY
before you can do a #USE RS232.

No errors
The program has successfully compiled and all requested output files have been
created.

No MAIN() function found
All programs are required to have one function with the name main().

Not enough RAM for all variables
The program requires more RAM than is available. The symbol map shows
variables allocated. The call tree shows the RAM used by each function.
 Additional RAM usage can be obtained by breaking larger functions into smaller
ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local
variables declared. Upon analysis, it may be determined that there are two main
parts to the calculations and many variables are not shared between the parts. A
function B may be defined with 7 local variables and a function C may be defined
with 7 local variables. Function A now calls B and C and combines the results
and now may only need 6 variables. The savings are accomplished because B
and C are not executing at the same time and the same real memory locations
will be used for their 6 variables (just not at the same time). The compiler will
allocate only 13 locations for the group of functions A, B, C where 20 were
required before to perform the same operation.

Number of bits is out of range
For a count of bits, such as in a structure definition, this must be 1-8. For a bit
number specification, such as in the #BIT, the number must be 0-7.

Compiler Error Messages

219

Out of ROM, A segment or the program is too large
A function and all of the INLINE functions it calls must fit into one segment (a
hardware code page). For example, on the '56 chip a code page is 512
instructions. If a program has only one function and that function is 600
instructions long, you will get this error even though the chip has plenty of ROM
left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once
and the linker might automatically INLINE it. This is easily determined by
reviewing the call tree. If this error is caused by too many functions being
automatically INLINED by the linker, simply add a #SEPARATE before a function
to force the function to be SEPARATE. Separate functions can be allocated on
any page that has room. The best way to understand the cause of this error is to
review the call tree.

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a (after it.

Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a
SHORT INT.

Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a
structure itself or other kind of variable.

Printf format type is invalid
An unknown character is after the % in a printf. Check the printf reference for
valid formats.

Printf format (%) invalid
A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count
The number of % format indicators in the printf does not match the actual
number of variables that follow. Remember in order to print a single %, you must
use %%.

Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and
it may not call any other function that will eventually re-call it.

Recursively defined structures not permitted
A structure may not contain an instance of itself.

C Compiler Reference Manual

220

Reference arrays are not permitted
A reference parameter may not refer to an array.

Return not allowed in void function
A return statement may not have a value if the function is void.

STDOUT not defined (may be missing #RS 232)
An attempt was made to use a I/O function such as printf when no default I/O
stream has been established. Add a #USE RS232 to define a I/O stream.

Stream must be a constant in the valid range
I/O functions like fputc, fgetc require a stream identifier that was defined in a
#USE RS232. This identifier must appear exactly as it does when it was defined.
Be sure it has not been redefined with a #define.

String too long

Structure field name required
A structure is being used in a place where a field of the structure must appear.
 Change to the form s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range
A subscript to a RAM array must be at least 1 and not more than 128 elements.
 Note that large arrays might not fit in a bank. ROM arrays may not occupy more
than 256 locations.

This linker function is not available in this compiler version.
Some linker functions are only available if the PCW or PCWH product is
installed.

This type cannot be qualified with this qualifier
Check the qualifiers. Be sure to look on previous lines. An example of this error
is:
VOID X;

Too many array subscripts
Arrays are limited to 5 dimensions.

Compiler Error Messages

221

Too many constant structures to fit into available space
Available space depends on the chip. Some chips only allow constant structures
in certain places. Look at the last calling tree to evaluate space usage. Constant
structures will appear as functions with a @CONST at the beginning of the name.

Too many elements in an ENUM
A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been identified

Too many nested #INCLUDEs
No more than 10 include files may be open at a time.

Too many parameters
More parameters have been given to a function than the function was defined
with.

Too many subscripts
More subscripts have been given to an array than the array was defined with.

Type is not defined
The specified type is used but not defined in the program. Check the spelling.

Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined identifier
The specified identifier is being used but has never been defined. Check the
spelling.

Undefined label that was used in a GOTO
There was a GOTO LABEL but LABEL was never encountered within the
required scope. A GOTO cannot jump outside a function.

Unknown device type
A #DEVICE contained an unknown device. The center letters of a device are
always C regardless of the actual part in use. For example, use PIC16C74 not
PIC16RC74. Be sure the correct compiler is being used for the indicated device.
 See #DEVICE for more information.

Unknown keyword in #FUSES
Check the keyword spelling against the description under #FUSES.

C Compiler Reference Manual

222

Unknown linker keyword
The keyword used in a linker directive is not understood.

Unknown type
The specified type is used but not defined in the program. Check the spelling.

Unprotected call in a #INT_GLOBAL
The interrupt function defined as #INT_GLOBAL is intended to be assembly
language or very simple C code. This error indicates the linker detected code
that violated the standard memory allocation scheme. This may be caused when
a C function is called from a #INT_GLOBAL interrupt handler.

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current
environment.

Compiler Warning Messages

Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was
intended to do if(a==b).

This warning indicates there may be such a typo in this line.

Assignment to enum is not of the correct type
If a variable is declared as a ENUM it is best to assign to the variables only
elements of the enum. For example:
 enum colors {RED,GREEN,BLUE} color;
 ...
 color = GREEN; // OK
 color = 1; // Warning 209
 color = (colors)1; //OK

Code has no effect
The compiler can not discern any effect this source code could have on the
generated code. Some examples:
 1;
 a==b;
 1,2,3;

Compiler Error Messages

223

Condition always FALSE
This error when it has been determined at compile time that a relational
expression will never be true. For example:
 int x;
 if(x>>9)

Condition always TRUE
This error when it has been determined at compile time that a relational
expression will never be false. For example:
 #define PIN_A1 41
 ...
 if(PIN_A1) // Intended was: if(input(PIN_A1))

Function not void and does not return a value
Functions that are declared as returning a value should have a return statement
with a value to be returned. Be aware that in C only functions declared VOID are
not intended to return a value. If nothing is specified as a function return value
"int" is assumed.

Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This
warning is issued for expressions where adding() would help to clarify the
meaning. For example:
 if(x << n + 1)

would be more universally understood when expressed:
 if(x << (n + 1))

Structure passed by value
Structures are usually passed by reference to a function. This warning is
generated if the structure is being passed by value. This warning is not
generated if the structure is less than 5 bytes.
 For example:
 void myfunct(mystruct s1) // Pass by value - Warning
 myfunct(s2);
 void myfunct(mystruct * s1) // Pass by reference - OK
 myfunct(&s2);
 void myfunct(mystruct & s1) // Pass by reference - OK
 myfunct(s2);

C Compiler Reference Manual

224

Unreachable code
Code included in the program is never executed. For example:
 if(n==5)
 goto do5;
 goto exit;
 if(n==20) // No way to get to this line
 return;

Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to
check to see if an unsigned variable is negative. For example the following will
not work as intended:
 int i;
 for(i=10; i>=0; i--)

Variable never used
A variable has been declared and never referenced in the code.

Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable
could never be larger than the constant. For example the following could never
be true:
 int x; // 8 bits, 0-255
 if (x>300)

225

Common Questions And Answers
How does one map a variable to an I/O port?

Two methods are as follows:

#byte PORTB = 6 //Just an example, check the
#define ALL_OUT 0 //Path sheet for the correct
#define ALL_IN 0xff //Address for your chip.
main() {
 int i;

 set_tris_b(ALL_OUT);
 PORTB = 0;// Set all pins low
 for(i=0;i<=127;++i) // Quickly count from 0
to 127
 PORTB=i; // on the I/O port pin
 set_tris_b(ALL_IN);
 i = PORTB; // i now contains the portb value.
}

Remember when using the #BYTE, the created variable is treated like memory.
You must maintain the tri-state control registers yourself via the SET_TRIS_X
function. Following is an example of placing a structure on an I/O port:

struct port_b_layout
 {int data : 4;
 int rw : 1;
 int cd : 1;
 int enable : 1;
 int reset : 1; };
struct port_b_layout port_b;
#byte port_b = 6
struct port_b_layout const INIT_1 = {0, 1,1,1,1};
struct port_b_layout const INIT_2 = {3, 1,1,1,0};
struct port_b_layout const INIT_3 = {0, 0,0,0,0};
struct port_b_layout const FOR_SEND = {0,0,0,0,0};
 // All outputs
struct port_b_layout const FOR_READ =
{15,0,0,0,0};
 // Data is an input
main() {
 int x;

C Compiler Reference Manual

226

 set_tris_b((int)FOR_SEND); // The constant
 // structure is
 // treated like
 // a byte and
 // is used to
 // set the data
 // direction
 port_b = INIT_1;
 delay_us(25);

port_b = INIT_2; // These constant
structures delay_us(25); // are used to set
all fields
 port_b = INIT_3; // on the port with a single
 // command

 set_tris_b((int)FOR_READ);
 port_b.rw=0;
 // Here the individual
 port_b.cd=1; // fields are accessed
 port_b.enable=0; // independently.
 x = port_b.data;
 port_b.enable=0

}

Common Questions And Answers

227

Why is the RS-232 not working right?
1. The PIC® is Sending Garbage Characters.

A. Check the clock on the target for accuracy. Crystals are usually not a
problem but RC oscillators can cause trouble with RS-232. Make sure the
#USE DELAY matches the actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as
the MAX 232, do not use INVERT when making direct connections with
resistors and/or diodes. You probably need the INVERT option in the #USE
RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not
be a visible character. PUTC('A') will output a visible character A.

2. The PIC® is Receiving Garbage Characters.

A. Check all of the above.

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard,
fast, fixed) used will be whatever the mode is when the #USE RS232 is
encountered. Staying with the default STANDARD mode is safest.

B. Use the following main() for testing:

main() {
 while(TRUE)
 putc('U');
}

Check the XMIT pin for activity with a logic probe, scope or whatever you
can. If you can look at it with a scope, check the bit time (it should be
1/BAUD). Check again after the level converter.

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:

main() {

C Compiler Reference Manual

228

 printf("start");
 while(TRUE)
 putc(getc()+1);
}

When connected to a PC typing A should show B echoed back.
If nothing is seen coming back (except the initial "Start"), check the RCV pin
on the PIC® with a logic probe. You should see a HIGH state and when a
key is pressed at the PC, a pulse to low. Trace back to find out where it is
lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level
converter. If the RCV pin is HIGH when no data is being sent, you should
NOT use INVERT. If the pin is low when no data is being sent, you need to
use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above
when no data is being sent.

C. When using PORT A with a device that supports the
SETUP_ADC_PORTS function make sure the port is set to digital inputs.
This is not the default. The same is true for devices with a comparator on
PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be
really slow when fast baud rates are used and cannot be really fast with slow
baud rates. Experiment with the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within
3% of a rate that can be achieved for no error to occur. Some parts have
internal bugs with BRGH set to 1 and the compiler will not use this unless
you specify BRGH1OK in the #USE RS232 directive.

Common Questions And Answers

229

How can I use two or more RS-232 ports on one PIC®?
The #USE RS232 (and I2C for that matter) is in effect for GETC, PUTC, PRINTF
and KBHIT functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo
the data to both the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)
void put_to_a(char c) {
 put(c);
}
char get_from_a() {
 return(getc()); }
#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
void put_to_b(char b) {
 putc(c);
}
main() {
 char c;
 put_to_a("Online\n\r");
 put_to_b("Online\n\r");
 while(TRUE) {
 c=get_from_a();
 put_to_b(c);
 put_to_a(c);
 }
}

The following will do the same thing but is more readable and is the recommended
method:

#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1,
STREAM=COM_A)
#USE RS232(BAUD=9600, XMIT=PIN_B2, RCV=PIN_B3,
STREAM=COM_B)

 main() {
 char c;
 fprintf(COM_A,"Online\n\r");
 fprintf(COM_B,"Online\n\r");
 while(TRUE) {

C Compiler Reference Manual

230

 c = fgetc(COM_A);
 fputc(c, COM_A);
 fputc(c, COM_B);
 }
 }

How does the PIC® connect to a PC?
A level converter should be used to convert the TTL (0-5V_ levels that the PIC®
operates with to the RS-232 voltages (+/- 3-12V) used by the PIC®. The
following is a popular configuration using the MAX232 chip as a level converter.

Common Questions And Answers

231

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the
RAM allocation can be a help in designing the program structure. The best re-
use of RAM is accomplished when local variables are used with lots of functions.
RAM is re-used between functions not active at the same time. See the NOT
ENOUGH RAM error message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex.
The more complex the expression, the more scratch RAM locations the compiler
will need to allocate to that expression. The RAM allocated is reserved during
the execution of the entire function but may be re-used between expressions
within the function. The total RAM required for a function is the sum of the
parameters, the local variables and the largest number of scratch locations
required for any expression within the function. The RAM required for a function
is shown in the call tree after the RAM=. The RAM stays used when the function
calls another function and new RAM is allocated for the new function. However
when a function RETURNS the RAM may be re-used by another function called
by the parent. Sequential calls to functions each with their own local variables is
very efficient use of RAM as opposed to a large function with local variables
declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and
other boolean variables. The compiler can pack eight such variables into one
byte location. The compiler does this automatically whenever you use SHORT
INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently.
An external 8 pin EEPROM or SRAM can be connected to the PIC® with just 2
wires and provide a great deal of additional storage capability. The compiler
package includes example drivers for these devices. The primary drawback is a
slower access time to read and write the data. The SRAM will have fast read
and write with memory being lost when power fails. The EEPROM will have a
very long write cycle, but can retain the data when power is lost.

C Compiler Reference Manual

232

Why does the .LST file look out of order?
The list file is produced to show the assembly code created for the C source
code. Each C source line has the corresponding assembly lines under it to show
the compiler’s work. The following three special cases make the .LST file look
strange to the first time viewer. Understanding how the compiler is working in
these special cases will make the .LST file appear quite normal and very useful.

1. Stray code near the top of the program is sometimes under what looks like a
non-executable source line.

Some of the code generated by the compiler does not correspond to any
particular source line. The compiler will put this code either near the top of the
program or sometimes under a #USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The
linker has re-arranged the code to properly fit the functions into the best code
pages and the best half of a code page. The resulting code is not in source
order. Whenever the compiler has a discontinuity in the .LST file, it will put a *
line in the file. This is most often seen between functions and in places where
INLINE functions are called. In the case of an INLINE function, the addresses
will continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and
over.

For example:

...........A=0;
03F: CLRF 15
*
46:CLRF 15
*
051: CLRF 15
*
113: CLRF 15

This effect is seen when the function is an INLINE function and is called from
more than one place. In the above case, the A=0 line is in an INLINE function
called in four places. Each place it is called from gets a new copy of the code.
Each instance of the code is shown along with the original source line, and the
result may look unusual until the addresses and the * are noticed.

Common Questions And Answers

233

How does the compiler determine TRUE and FALSE on
expressions?
When relational expressions are assigned to variables, the result is always 0 or
1.

For example:

bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.

For example:

bytevar = (x>y)*4;

is the same as:

if(x>y)
 bytevar=4;
else
 bytevar=0;

SHORT INTs (bit variables) are treated the same as relational expressions.
They evaluate to 0 or 1.

When expressions are converted to relational expressions or SHORT INTs, the
result will be FALSE (or 0) when the expression is 0, otherwise the result is
TRUE (or 1).

For example:

bytevar = 54;
bitvar = bytevar; //bitvar will be 1 (bytevar ! =
O)

if(bytevar) //will be TRUE
bytevar = 0;
bitvar = bytevar; //bitvar will be 0

C Compiler Reference Manual

234

Why does the compiler use the obsolete TRIS?
The use of TRIS causes concern for some users. The Microchip data sheets
recommend not using TRIS instructions for upward compatibility. If you had
existing ASM code and it used TRIS then it would be more difficult to port to a
new Microchip part without TRIS. C does not have this problem, however; the
compiler has a device database that indicates specific characteristics for every
part. This includes information on whether the part has a TRIS and a list of
known problems with the part. The latter question is answered by looking at the
device errata.

CCS makes every attempt to add new devices and device revisions as the data
and errata sheets become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply
change the database entry for your part and the compiler will not use it.

Common Questions And Answers

235

How does the PIC® connect to an I2C device?
Two I/O lines are required for I2C. Both lines must have pullup registers. Often
the I2C device will have a H/W selectable address. The address set must
match the address in S/W. The example programs all assume the selectable
address lines are grounded.

Instead of 800, the compiler calls 0. Why?
The PIC® ROM address field in opcodes is 8-10 Bits depending on the chip and
specific opcode. The rest of the address bits come from other sources. For
example, on the 174 chip to call address 800 from code in the first page you will
see:

BSF0A,3
CALL 0

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A)
has been set.

C Compiler Reference Manual

236

Instead of A0, the compiler is using register 20. Why?
The PIC® RAM address field in opcodes is 5-7 bits long, depending on the chip.
The rest of the address field comes from the status register. For example, on the
74 chip to load A0 into W you will see:

BSF 3,5
MOVFW 20

Note that the BSF may not be immediately before the access since the compiler
optimizes out the redundant bank switches.

Common Questions And Answers

237

How do I directly read/write to internal registers?
A hardware register may be mapped to a C variable to allow direct read and write
capability to the register. The following is an example using the TIMER0 register:

#BYTE timer0 = 0x01
timer0= 128; //set timer0 to 128
while (timer0 ! = 200); // wait for timer0 to reach
200

Bits in registers may also be mapped as follows:

#BIT T0IF = 0x0B.2
.
.
.
while (!T0IF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");
a = gethex();
printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the
most common tasks with C function calls. When possible, it is best to use the
built-in functions rather than directly write to registers. Register locations change
between chips and some register operations require a specific algorithm to be
performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For
example, it is better to do set_tris_A(0); rather than *0x85=0;

C Compiler Reference Manual

238

How can a constant data table be placed in ROM?
The compiler has support for placing any data structure into the device ROM as a
constant read-only element. Since the ROM and RAM data paths are separate
in the PIC®, there are restrictions on how the data is accessed. For example, to
place a 10 element BYTE array in ROM use:

BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i];
OR
x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including
structures, longs and floats.

Note that in the implementation of the above table, a function call is made when
a table is accessed with a subscript that cannot be evaluated at compile time.

Common Questions And Answers

239

How can the RB interrupt be used to detect a button press?
The RB interrupt will happen when there is any change (input or output) on pins
B4-B7. There is only one interrupt and the PIC® does not tell you which pin
changed. The programmer must determine the change based on the previously
known value of the port. Furthermore, a single button press may cause several
interrupts due to bounce in the switch. A debounce algorithm will need to be
used. The following is a simple example:

#int_rb
rb_isr() {
 byte changes;
 changes = last_b ^ port_b;
 last_b = port_b;
 if (bit_test(changes,4)&& !bit_test(last_b,4)){
 //b4 went low
 }
 if (bit_test(changes,5)&& !bit_test (last_b,5)){
 //b5 went low
 }
 .
 .
 .
 delay_ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want
to sit in an ISR for 100 MS to allow the switch to debounce. A more elegant
solution is to set a timer on the first interrupt and wait until the timer overflows.
Don’t process further changes on the pin.

C Compiler Reference Manual

240

What is the format of floating point numbers?
CCS uses the same format Microchip uses in the 14000 calibration constants.
PCW users have a utility PCONVERT that will provide easy conversion to/from
decimal, hex and float in a small window in Windows. See EX_FLOAT.C for a
good example of using floats or float types variables. The format is as follows:

Example Number
0 00 00 00 00
1 7F 00 00 00
-1 7F 80 00 00
10 82 20 00 00
100 85 48 00 00
123.45 85 76 E6 66
123.45E20 C8 27 4E 53
123.45 E-20 43 36 2E 17

Common Questions And Answers

241

Why does the compiler show less RAM than there really is?
Some devices make part of the RAM much more ineffective to access than the
standard RAM. In particular, the 509, 57, 66, 67,76 and 77 devices have this
problem.

By default, the compiler will not automatically allocate variables to the problem
RAM and, therefore, the RAM available will show a number smaller than
expected.

There are three ways to use this RAM:

1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a
pointer to these variables.

Example:

#BYTE counter=0x30

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works
well if you need to allocate an array in this RAM.

Example:

For(i=0;i<15;i++)
 Write_Bank(1,i,getc());
For(i=0;i<=15;i++)
 PUTC(Read_Bank(1,i));

3. You can switch to larger pointers for full RAM access (this takes more ROM).
In PCB add *=8 to the #device and in PCM/PCH add *=16 to the #device.

Example:

#DEVICE PIC16C77 *=16

 or

#include <16C77.h>
#device *=16

C Compiler Reference Manual

242

What is an easy way for two or more PICs® to communicate?
There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show
how to use a simple one-wire interface to transfer data between PICs®. Slower
data can use pin B0 and the EXT interrupt. The built-in UART may be used for
high speed transfers. An RS232 driver chip may be used for long distance
operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

Common Questions And Answers

243

How do I write variables to EEPROM that are not a byte?
The following is an example of how to read and write a floating point number
from/to EEPROM. The same concept may be used for structures, arrays or any
other type.

• n is an offset into the eeprom.
• For floats you must increment it by 4.
• For example, if the first float is at 0 the second one should be at 4 and the third
at 8.

WRITE_FLOAT_EXT_EEPROM(long int n, float data) {
 int i;

 for (i = 0; i < 4; i++)
 write_ext_eeprom(i + n, *(&data + i)) ;
}

float READ_FLOAT_EXT_EEPROM(long int n) {
 int i;
 float data;

 for (i = 0; i < 4; i++)
 *(&data + i) = read_ext_eeprom(i + n);

 return(data);
}

C Compiler Reference Manual

244

How do I get getc() to timeout after a specified time?
GETC will always wait for the character to become available. The trick is to not
call getc() until a character is ready. This can be determined with kbhit().

The following is an example of how to time out of waiting for an RS232 character.

Note that without a hardware UART the delay_us should be less than a tenth of a
bit time (10 us at 9600 baud). With hardware you can make it up to 10 times the
bit time. (1000 us at 9600 baud). Use two counters if you need a timeout value
larger than 65535.

short timeout_error;

char timed_getc() {
 long timeout;

 timeout_error=FALSE;
 timeout=0;
 while(!kbhit&&(++timeout<50000)) // 1/2 second
 delay_us(10);
 if(kbhit())
 return(getc());
 else {
 timeout_error=TRUE;
 return(0);
 }

}

Common Questions And Answers

245

How can I pass a variable to functions like OUTPUT_HIGH()?
The pin argument for built in functions like OUTPUT_HIGH need to be known at
compile time so the compiler knows the port and bit to generate the correct code.

If your application needs to use a few different pins not known at compile time
consider:

switch(pin_to_use) {
 case PIN_B3 : output_high(PIN_B3); break;
 case PIN_B4 : output_high(PIN_B4); break;
 case PIN_B5 : output_high(PIN_B5); break;
 case PIN_A1 : output_high(PIN_A1); break;
 }

If you need to use any pin on a port use:

#byte portb = 6
#byte portb_tris = 0x86 // **

portb_tris &= ~(1<<bit_to_use); // **

portb |= (1<<bit_to_use); // bit_to_use is 0-7

If you need to use any pin on any port use:

*(pin_to_use/8|0x80) &= ~(1<<(pin_to_use&7)); // **

*(pin_to_use/8) |= (1<<(pin_to_use&7));

In all cases pin_to_use is the normal PIN_A0... defines.

** These lines are only required if you need to change the direction register
(TRIS).

C Compiler Reference Manual

246

How do I put a NOP at location 0 for the ICD?
The CCS compilers are fully compatible with Microchips ICD debugger using
MPLAB. In order to prepare a program for ICD debugging (NOP at location 0
and so on) you need to add a #DEVICE ICD=TRUE after your normal #DEVICE.

For example:

#INCLUDE <16F877.h>
#DEVICE ICD=TRUE

How do I do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We
used the \f to indicate the start of the string.

This example shows how to put a floating point number in a string.

main() {
 char string[20];
 float f;
 f=12.345;
 sprintf(string,"\f%6.3f",f);
}

Common Questions And Answers

247

How do I make a pointer to a function?
The compiler does not permit pointers to functions so that the compiler can know
at compile time the complete call tree. This is used to allocate memory for full
RAM re-use. Functions that could not be in execution at the same time will use
the same RAM locations. In addition since there is no data stack in the PIC®,
function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will
prevent knowing both of these things at compile time. Users sometimes will want
function pointers to create a state machine. The following is an example of how
to do this without pointers:

enum tasks {taskA, taskB, taskC};

run_task(tasks task_to_run) {

 switch(task_to_run) {
 case taskA : taskA_main(); break;
 case taskB : taskB_main(); break;
 case taskC : taskC_main(); break;
 }

}

C Compiler Reference Manual

248

How much time do math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If
possible consider fixed point instead of floating point. For example instead of
"float cost_in_dollars;" do "long cost_in_cents;". For trig formulas consider a
lookup table instead of real time calculations (see EX_SINE.C for an example).
The following are some rough times on a 20 mhz, 14 bit PIC®. Note times will
vary depending on memory banks used.

20 mhz PIC16
 int8 [us] int16 [us] int32 [us] float [us]

+ 0.6 1.4 3 111.3
- 0.6 1.4 3 113.9
* 11.1 47.2 132 178.3
/ 23.2 70.8 239.2 330.9

exp() * * * 1697.3
ln() * * * 2017.7

sin() * * * 2184.5

40 mhz PIC18
 int8 [us] int16 [us] int32 [us] float [us]

+ 0.3 0.4 0.6 51.3
- 0.3 0.4 0.6 52.3
* 0.4 3.2 22.2 35.8
/ 11.3 32 106.6 144.9

exp() * * * 510.4
ln() * * * 644.8

sin() * * * 698.7

Common Questions And Answers

249

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is
performed. Some information may be lost if the destination can not properly
represent the source. For example: int8var = int16var; Causes the top byte of
int16var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the
sign being maintained. For example, a signed 8 bit int that is -1 when assigned
to a 16 bit signed variable is still -1.

Signed numbers that are negative when assigned to a unsigned number will
cause the 2's complement value to be assigned. For example, assigning -1 to a
int8 will result in the int8 being 255. In this case the sign bit is not extended
(conversion to unsigned is done before conversion to more bits). This means the
-1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same
size or smaller will result in the value being distorted. For example, assigning 255
to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order
operand is converted (using the above rules) to the higher. The order is as
follows:

• Float
• Signed 32 bit
• Unsigned 32 bit
• Signed 16 bit
• Unsigned 16 bit
• Signed 8 bit
• Unsigned 8 bit
• 1 bit

The result is then the same as the operands. Each operator in an expression is
evaluated independently. For example:

i32 = i16 - (i8 + i8)

C Compiler Reference Manual

250

The + operator is 8 bit, the result is converted to 16 bit after the addition and the -
is 16 bit, that result is converted to 32 bit and the assignment is done. Note that
if i8 is 200 and i16 is 400 then the result in i32 is 256. (200 plus 200 is 144 with a
8 bit +)

Explicit conversion may be done at any point with (type) inserted before the
expression to be converted. For example in the above the perhaps desired effect
may be achieved by doing:

i32 = i16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the
second i8 is forced to 16 bit.

A common C programming error is to do something like:

i16 = i8 * 100;

When the intent was:

i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are
never negative. For example 2-4 is 254 (in 8 bit). This means the following is an
endless loop since i is never less than 0:

int i;
for(i=100; i>=0; i--)

251

Example Programs
EXAMPLE PROGRAMS

A large number of example programs are included with the software. The
following is a list of many of the programs and some of the key programs are re-
printed on the following pages. Most programs will work with any chip by just
changing the #INCLUDE line that includes the device information. All of the
following programs have wiring instructions at the beginning of the code in a
comment header. The SIOW.EXE program included in the program directory
may be used to demonstrate the example programs. This program will use a PC
COM port to communicate with the target.

Generic header files are included for the standard PIC® parts. These files are in
the DEVICES directory. The pins of the chip are defined in these files in the form
PIN_B2. It is recommended that for a given project, the file is copied to a project
header file and the PIN_xx defines be changed to match the actual hardware.
For example; LCDRW (matching the mnemonic on the schematic). Use the
generic include files by placing the following in your main .C file:
#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_14KAD.C
An analog to digital program with calibration for the PIC14000

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_8PIN.C
Demonstrates the use of 8 pin PICs with their special I/O requirements

EX_92LCD.C
Uses a PIC16C92x chip to directly drive LCD glass

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_CCP1S.C
Generates a precision pulse using the PIC CCP module

C Compiler Reference Manual

252

EX_CCPMP.C
Uses the PIC CCP module to measure a pulse width

EX_COMP.C
Uses the analog comparator and voltage reference available on some PICs

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DNSLOOKUP.C
Example to perform a DNS lookup on the internet

EX_DPOT.C
Controls an external digital POT

EX_DTMF.C
Generates DTMF tones

EX_EMAIL.C
Program will send e-mail

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add I/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_FLOAT.C
Shows how to use basic floating point

Example Programs

253

EX_FREQC.C
A 50 mhz frequency counter

EX_GLINT.C
Shows how to define a custom global interrupt handler for fast interrupts

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LOAD.C
Serial boot loader program for chips like the 16F877

EX_LOGGER.C
A simple temperature data logger, uses the flash program memory for saving
data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts will problem memory allocation

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

C Compiler Reference Manual

254

EX_PBUSR.C
Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

EX_PSP.C
Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C
Measures a pulse width using timer0

EX_PWM.C
Uses the PIC CCP module to generate a pulse stream

EX_REACT.C
Times the reaction time of a relay closing using the CCP module

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

Example Programs

255

EX_SLAVE.C
Simulates an I2C serial EEPROM showing the PIC slave mode

EX_SPEED.C
Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

C Compiler Reference Manual

256

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an ext USB
chip

EX_VOICE.C
Self learning text to voice program

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDT.C
Shows how to use the PIC watch dog timer

EX_WDT18.C
Shows how to use the PIC18 watch dog timer

EX_WEBSV.C
Shows how to implement a simple web server

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

LIST OF INCLUDE FILES (IN THE DRIVERS DIRECTORY)

14KCAL.C
Calibration functions for the PIC14000 A/D converter

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

Example Programs

257

2416.C
Serial EEPROM functions

24256.C
Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

68HC68R2.C
Serial RAM functions

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

C Compiler Reference Manual

258

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

AD8400.C
Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

Example Programs

259

DNS.C
Functions used to perform a DNS lookup on the internet

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

ERRNO.H
Standard C error handling for math errors

FLOAT.H
Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

ISD4003.C
Functions for the ISD4003 voice record/playback chip

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

C Compiler Reference Manual

260

LIMITS.H
Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H
Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

PCF8570.C
Serial RAM functions

PIC_USB.H
Hardware layer for built-in PIC USB

RS485.C
DRIVER FOR A RS485 PROTOCOL IMPLEMENTATION

S7600.H
Driver for Seiko S7600 TCP/IP chip

SC28L19X.C
Driver for the Phillips external UART (4 or 8 port)

Example Programs

261

SETJMP.H
Standard C functions for doing jumps outside functions

SMTP.H
e-mail functions

STDDEF.H
Standard C definitions

STDIO.H
Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C
Functions to interface to Nationals USBN960x USB chips

USB.C
USB token and request handler code, also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

C Compiler Reference Manual

262

///
/// EX_SQW.C ///
///This program displays a message over the RS-232 and ///
/// waits for any keypress to continue. The program ///
///will then begin a 1khz square wave over I/O pin B0. ///
/// Change both delay_us to delay_ms to make the ///
/// frequency 1 hz. This will be more visible on ///
/// a LED. Configure the CCS prototype card as ///
/// follows: insert jumpers from 11 to 17, 12 to 18, ///
/// and 42 to 47. ///
///

#ifdef __PCB__
#include <16C56.H>
#else
#include <16C84.H>
#endif

#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2)

main() {
 printf("Press any key to begin\n\r");
 getc();
 printf("1 khz signal activated\n\r");
 while (TRUE) {
 output_high (PIN_B0);
 delay_us(500);
 output_low(PIN_B0);
 delay_us(500);
 }
}

Example Programs

263

///
/// EX_STWT.C ///
/// This program uses the RTCC (timer0) and ///
/// interrupts to keep a real time seconds counter. ///
/// A simple stop watch function is then implemented. ///
///Configure the CCS prototype card as follows, insert ///
/// jumpers from: 11 to 17 and 12 to 18. ///
///

#include <16C84.H>
#use delay (clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2_
#define INTS_PER_SECOND 76 //(20000000/(4*256*256))
byte seconds; //Number of interrupts left
 //before a second has elapsed

#int_rtcc //This function is called
clock_isr() { //every time the RTCC (timer0)
 //overflows (255->0)
 //For this program this is apx
 //76 times per second.

 if(--int_count==0) {
 ++seconds;
 int_count=INTS_PER_SECOND;

 }
}

main() {
 byte start;
 int_count=INTS_PER_SECOND;
 set_rtcc(0);
 setup_counters (RTCC_INTERNAL, RTCC_DIV_256);
 enable_interrupts (INT_RTCC);
 enable_interrupts(GLOBAL)
 do {
 printf ("Press any key to begin. \n\r");
 getc();
 start=seconds;
 printf("Press any key to stop. \n\r");
 getc();
 printf ("%u seconds. \n\r", seconds-start);
 } while (TRUE);
}

C Compiler Reference Manual

264

//
/// EX_INTEE.C ///
///This program will read and write to the ’83 or ’84 ///
/// internal EEPROM. Configure the CCS prototype ///
///card as follows: insert jumpers from 11 to 17 and ///
/// 12 to 18. ///
//

#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN_A3, rv+PIN_A2)

#include <HEX.C>

main() {
 byte i,j,address, value;

 do {
 printf("\r\n\nEEPROM: \r\n") //Displays contents
 for(i=0; i<3; ++i) { //entire EEPROM
 for (j=0; j<=15; ++j) { //in hex
 printf("%2x", read_eeprom(i+16+j));

 }
 printf("\n\r");
 }
 printf ("\r\nlocation to change: ");
 address= gethex();
 printf ("\r\nNew value: ");
 value=gethex();

 write_eeprom (address, value);
 } while (TRUE)
}

Example Programs

265

///
///Library for a Microchip 93C56 configured for a x8 ///
/// ///
/// org init_ext_eeprom(); Call before the other ///
/// functions are used ///
/// ///
/// write_ext_eeprom(a,d); Write the byte d to ///
/// the address a ///
/// ///
/// d=read_ext_eeprom (a); Read the byte d from ///
/// the address a. ///
/// The main program may define eeprom_select, ///
/// eeprom_di, eeprom_do and eeprom_clk to override ///
/// the defaults below. ///
///

#ifndef EEPROM_SELECT

#define EEPROM_SELECT PIN_B7
#define EEPROM_CLK PIN_B6
#define EEPROM_DI PIN_B5
#define EEPROM_DO PIN_B4

#endif

#define EEPROM_ADDRESS byte
#define EEPROM_SIZE 256

void init_ext_eeprom() {
 byte cmd[2];
 byte i;

 output_low(EEPROM_DI);
 output_low(EEPROM_CLK);
 output_low(EEPROM_SELECT);

 cmd[0]=0x80;
 cmd[1]=0x9;

 for (i=1; i<=4; ++i)
 shift_left(cmd, 2,0);
 output_high (EEPROM_SELECT);
 for (i=1; i<=12; ++i) {
 output_bit(EEPROM_DI, shift_left(cmd, 2,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
}
 output_low(EEPROM_DI);
 output_low(EEPROM_SELECT);

C Compiler Reference Manual

266

}

void write_ext_eeprom (EEPROM_ADDRESS address, byte data) {
 byte cmd[3];
 byte i;

 cmd[0]=data;
 cmd[1]=address;
 cmd[2]=0xa;

 for(i=1;i<=4;++i)
 shift_left(cmd,3,0);
 output_high(EEPROM_SELECT);
 for(i=1;i<=20;++i) {
 output_bit (EEPROM_DI, shift_left (cmd,3,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
 }
 output_low (EEPROM_DI);
 output_low (EEPROM_SELECT);
 delay_ms(11);
}

byte read_ext_eeprom(EEPROM_ADDRESS address) {
 byte cmd[3];
 byte i, data;

 cmd[0]=0;
 cmd[1]=address;
 cmd[2]=0xc;

 for(i=1;i<=4;++i)
 shift_left(cmd,3,0);
 output_high(EEPROM_SELECT);
 for(i=1;i<=20;++i) {
 output_bit (EEPROM_DI, shift_left (cmd,3,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
 if (i>12)
 shift_left (&data, 1, input (EEPROM_DO));
 }
 output_low (EEPROM_SELECT);
 return(data);
}

267

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following
provisions. If you choose not to agree with these provisions promptly return the
unopened package for a refund.

1. License- Custom Computer Services ("CCS, Inc") grants you a license to use
the software program ("Licensed Materials") on a single-user computer. Use of
the Licensed Materials on a network requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed
Materials identified as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and
workmanship and that the software will substantially conform to the related
documentation for a period of thirty (30) days after the date of your purchase.
CCS does not warrant that the Licensed Materials will be free from error or will
meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied,
including, but not limited to, any implied warranties of merchantability and fitness
for a particular purpose, regarding the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or
consequential damages, including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to
any country other than it was originally shipped to by CCS.

The Licensed Materials are copyrighted
© 1994, 2005 Custom Computer Services Incorporated
All Rights Reserved Worldwide
P.O. Box 2452
Brookfield, WI 53008

