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About This Manual

This manual provides information about analysis and mathematical 
concepts in LabVIEW.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames and extensions, and code excerpts.

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• LabVIEW Measurements Manual

• LabVIEW Help, available by selecting Help»VI, Function, & 
How-To Help

• LabVIEW User Manual
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• Getting Started with LabVIEW

• On the Use of Windows for Harmonic Analysis with the Discrete 
Fourier Transform (Proceedings of the IEEE, Volume 66, No. 1, 
January 1978)
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1
Introduction to Measurement 
Analysis in LabVIEW

Digital signals are everywhere in the world around us. Telephone 
companies use digital signals to represent the human voice. Radio, TV, 
and hi-fi sound systems are all gradually converting to the digital domain 
because of its superior fidelity, noise reduction, and signal processing 
flexibility. Data is transmitted from satellites to earth ground stations 
in digital form. NASA’s pictures of distant planets and outer space are 
often processed digitally to remove noise and extract useful information. 
Economic data, census results, and stock market prices are all available in 
digital form. Because of the many advantages of digital signal processing, 
analog signals also are converted to digital form before they are processed 
with a computer. 

This chapter provides a background in basic digital signal processing and 
an introduction to the LabVIEW Measurement Analysis VIs.

The Importance of Data Analysis
The importance of integrating analysis libraries into engineering stations is 
that the raw data, as shown Figure 1-1, does not always immediately 
convey useful information. Often, you must transform the signal, remove 
noise disturbances, correct for data corrupted by faulty equipment, or 
compensate for environmental effects, such as temperature and humidity.

Figure 1-1.  Raw Data
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By analyzing and processing the digital data, you can extract the useful 
information from the noise and present it in a form more comprehensible 
than the raw data, as shown in Figure 1-2.

Figure 1-2.  Processed Data

The LabVIEW block diagram programming approach and the extensive set 
of LabVIEW Measurement Analysis VIs simplify the development of 
analysis applications.

Data Sampling

Sampling Signals
To use digital signal processing techniques, you must first convert an 
analog signal into its digital representation. In practice, the conversion is 
implemented by using an analog-to-digital (A/D) converter. Consider an 
analog signal x(t) that is sampled every ∆t seconds. The time interval ∆t is 
known as the sampling interval or sampling period. Its reciprocal, 1/∆t, is 
known as the sampling frequency, with units of samples/second. Each of 
the discrete values of x(t) at t = 0, ∆t, 2∆t, 3∆t, and so on, is known as a 
sample. Thus, x(0), x(∆t), x(2∆t), …, are all samples. The signal x(t) can 
thus be represented by the following discrete set of samples.

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), …}

Figure 1-3 shows an analog signal and its corresponding sampled version. 
The sampling interval is ∆t. Notice that the samples are defined at discrete 
points in time.
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Figure 1-3.  Analog Signal and Corresponding Sampled Version

The following notation represents the individual samples.

x[i] = x(i∆t)

for

i = 0, 1, 2, …

If N samples are obtained from the signal x(t), then you can represent x(t) 
by the following sequence.

X = {x[0], x[1], x[2], x[3], …, x[N–1]}

The preceding sequence representing x(t) is known as the digital 
representation, or the sampled version, of x(t). Notice that the sequence 
X = {x[i]} is indexed on the integer variable i and does not contain any 
information about the sampling rate. So knowing only the values of the 
samples contained in X gives you no information about the sampling rate.

Sampling Considerations
A/D converters (ADCs) are an integral part of National Instruments 
DAQ boards. One of the most important parameters of an analog input 
system is the rate at which the DAQ device samples an incoming signal. 
The sampling rate determines how often an A/D conversion takes place. 
A fast sampling rate acquires more points in a given time and can, 
therefore, often form a better representation of the original signal 
than a slow sampling rate. Sampling too slowly might result in a poor 
representation of your analog signal. Figure 1-4 shows an adequately 
sampled signal, as well as the effects of undersampling. Undersampling 
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causes the signal to appear as if it has a different frequency than it actually 
does. The misrepresentation of a signal by the signal appearing to have a 
different frequency than it actually does is called an alias.

Figure 1-4.  Aliasing Effects of an Improper Sampling Rate

According to Shannon’s theorem, to avoid aliasing, you must sample at a 
rate greater than twice the maximum frequency component in the signal 
you are acquiring. For a given sampling rate, the maximum frequency that 
you can accurately represent without aliasing is known as the Nyquist 
frequency. The Nyquist frequency equals one-half the sampling frequency. 
Signals with frequency components above the Nyquist frequency appear 
aliased between DC and the Nyquist frequency. The alias frequency is the 
absolute value of the difference between the frequency of the input signal 
and the closest integer multiple of the sampling rate. Figures 1-5 and 1-6 
illustrate the aliasing phenomenon. For example, assume the sampling 
frequency fs is 100 Hz. Also, assume the input signal contains the following 
frequencies:

• F1 = 25 Hz

• F2 = 70 Hz

• F3 = 160 Hz

• F4 = 510 Hz

The frequencies contained in the input signal are shown in Figure 1-5. 

Adequately Sampled Signal

Aliased Signal Due to Undersampling
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Figure 1-5.  Actual Signal Frequency Components

In Figure 1-6, notice that frequencies below the Nyquist frequency of 
fs/2 = 50 Hz are sampled correctly. Frequencies above the Nyquist 
frequency appear as aliases. For example, F1 appears at the correct 
frequency, but F2, F3, and F4 have aliases at 30 Hz, 40 Hz, and 10 Hz, 
respectively. 

Figure 1-6.  Signal Frequency Components and Aliases

The alias frequency equals the absolute value of the difference between the 
closest integer multiple of the sampling frequency and the input frequency, 
as shown in the following equation.

where AF is the alias frequency, CIMSF is the closest integer multiple of 
the sampling frequency, and IF is the input frequency. For example, you 
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can compute the alias frequencies for F2, F3, and F4 as shown in the 
following equations.

Alias F2 = |100 – 70| = 30 Hz
Alias F3 = |(2)100 – 160| = 40 Hz
Alias F4 = |(5)100 – 510| = 10 Hz

A question often asked is, “How fast should I sample?” Your first thought 
may be to sample at the maximum rate available on your DAQ device. 
However, if you sample very fast over long periods of time, you may not 
have enough memory or hard disk space to hold the data. Figure 1-7 shows 
the effects of various sampling rates. In case A, the sine wave of frequency 
f is sampled at the same frequency fs (samples/sec) = f (cycles/sec), or at 
1 sample per cycle. The reconstructed waveform appears as an alias at DC. 
As you increase the sampling to 7 samples/4 cycles, as in case b, the 
waveform increases in frequency, but aliases to a frequency less than the 
original signal (3 cycles instead of 4). The sampling rate in case B is 
fs = 7/4 f. If you increase the sampling rate to fs = 2f, the digitized waveform 
has the correct frequency (same number of cycles), and can be 
reconstructed as the original sinusoidal wave, as shown in case C. For 
time-domain processing, it may be important to increase your sampling rate 
so that the samples more closely represent the original signal. By increasing 
the sampling rate to well above f, say to fs = 10f, or 10 samples/cycle, you 
can accurately reproduce the waveform, as shown in case D.

Figure 1-7.  Effects of Sampling at Different Rates

A. 1 sample/1 cycle

B. 7 samples/4 cycles

C. 2 samples/cycle

D. 10 samples/cycle
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Why Do You Need Anti-Aliasing Filters?
You have seen that the sampling rate should be at least twice the maximum 
frequency of the signal that you are sampling. In other words, the maximum 
frequency of the input signal should be less than or equal to half of the 
sampling rate. But how do you ensure that this is definitely the case in 
practice? Even if you are sure that the signal being measured has an upper 
limit on its frequency, pickup from stray signals (such as the powerline 
frequency or from local radio stations) could contain frequencies higher 
than the Nyquist frequency. These frequencies may then alias into the 
desired frequency range and thus give you erroneous results. 

To be completely sure that the frequency content of the input signal is 
limited, a lowpass filter (a filter that passes low frequencies but attenuates 
the high frequencies) is added before the sampler and the ADC. This filter 
is called an anti-alias filter because by attenuating the higher frequencies 
(greater than Nyquist), it prevents the aliasing components from being 
sampled. Because at this stage (before the sampler and the ADC) we are 
still in the analog world, the anti-aliasing filter is an analog filter. 

An ideal anti-alias filter, shown in Figure 1-8 (a), passes all the desired 
input frequencies, the frequencies below f1, and cuts off all the undesired 
frequencies, the frequencies above f1. However, an ideal anti-alias filter is 
not physically realizable.

Figure 1-8.  Ideal versus Practical Anti-Alias Filter

In practice, filters look as shown in Figure 1-8(b). Practical anti-alias filters 
pass all frequencies < f1 and cut off all frequencies > f2. The region between 
f1 and f2 is known as the transition band, which contains a gradual 
attenuation of the input frequencies. Although you want to pass only 
signals with frequencies < f1, the signals in the transition band could 
still cause aliasing. Therefore, in practice, you should use a sampling 
frequency greater than two times the highest frequency in the transition 
band. Because this sampling frequency turns out to be more than two times 
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the maximum input frequency (f1), you might see that the sampling rate is 
more than twice the maximum input frequency.

Why Use Decibels?
On some instruments, you can display the amplitude in a linear or decibel 
(dB) scale. The linear scale shows the amplitudes as they are, whereas the 
decibel scale is a transformation of the linear scale into a logarithmic scale. 
The following example illustrates why this transformation is necessary.

Suppose that you want to display a signal with very large as well as very 
small amplitudes. Let us assume you have a display height of 10 cm and are 
utilizing the entire height of the display for the largest amplitude. So, if the 
largest amplitude in the signal is 100 V, a height of 1 cm of the display 
corresponds to 10 V. If the smallest amplitude of the signal is 0.1 V, this 
corresponds to a height of only 0.1 mm. This will be barely visible on the 
display.

To see all the amplitudes, from the largest to the smallest, you must change 
the amplitude scale. Alexander Graham Bell invented a unit, the Bell, 
which is logarithmic, compressing large amplitudes and expanding small 
amplitudes. However, the Bell was too big of a unit, so commonly the 
decibel (1/10th of a Bell) is used. The decibel (dB) is defined as

1 dB = 10 log10 (Power Ratio) = 20 log10 (Voltage Ratio)

Table 1-1 shows the relationship between the decibel and the power and 
voltage ratios. 

Table 1-1.  Decibels and Power and Voltage Ratio Relationship

dB Power Ratio Voltage Ratio

+40 10,000 100

+20 100 10

+6 4 2

+3 2 1.4

0 1 1

–3 1/2 1/1.4

–6 1/4 1/2
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Thus, you see that the dB scale is useful in compressing a wide range of 
amplitudes into a small set of numbers.

–20 1/100 1/10

–40 1/10,000 1/100

Table 1-1.  Decibels and Power and Voltage Ratio Relationship (Continued)

dB Power Ratio Voltage Ratio
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2
Frequency Analysis

This chapter describes the fundamentals of the discrete Fourier transform 
(DFT) and the fast Fourier transform (FFT) and how they are used in 
spectral analysis. Use the NI Example Finder, available by selecting 
Help»Find Examples, to find examples using the digital signal processing 
VIs and the measurement analysis VIs.

Frequency Domain versus Time Domain
The time-domain representation gives the amplitudes of the signal at the 
instants of time during which it was sampled. However, in many cases you 
want to know the frequency content of a signal rather than the amplitudes 
of the individual samples. 

Fourier’s theorem states that any waveform in the time domain can be 
represented by the weighted sum of sines and cosines. The same waveform 
can then be represented in the frequency domain as a pair of amplitude and 
phase values at each component frequency.

You can generate any waveform by adding up sine waves, each with a 
particular amplitude and phase. Figure 2-1 shows the original waveform, 
labeled sum, and its component frequencies. The fundamental frequency is 
shown at the frequency f 0, the second harmonic at frequency 2f0, and the 
third harmonic at frequency 3f0.
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Figure 2-1.  Signal Formed by Adding Three Frequency Components

In the frequency domain, you can conceptually separate the sine waves that 
add to form the complex time-domain signal. Figure 2-1 shows single 
frequency components, which spread out in the time domain, as distinct 
impulses in the frequency domain. The amplitude of each frequency line is 
the amplitude of that frequency component’s time waveform. The 
representation of a signal in terms of its individual frequency components 
is known as the frequency-domain representation of the signal. The 
frequency-domain representation could give more insight about the signal 
and the system from which it was generated.

The samples of a signal obtained from a DAQ device constitute the 
time-domain representation of the signal. Some measurements, such as 
harmonic distortion, are very difficult to quantify by inspecting the time 
waveform on an oscilloscope. When the same signal is displayed in the 
frequency domain by an FFT Analyzer, also known as a Dynamic Signal 
Analyzer, you easily can measure the harmonic frequencies and 
amplitudes.

Discrete Fourier Transform (DFT)
The algorithm used to transform samples of the data from the time domain 
into the frequency domain is known as the discrete Fourier transform 
(DFT). The DFT establishes the relationship between the samples of a 
signal in the time domain and their representation in the frequency domain. 
The DFT is widely used in the fields of spectral analysis, applied 

Time Axis

Frequency Axis

Sum
f0

2 f0

3 f0
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mechanics, acoustics, medical imaging, numerical analysis, 
instrumentation, and telecommunications. Figure 2-2 illustrates using the 
DFT to transform data from the time domain into the frequency domain.

 

Figure 2-2.  Discrete Fourier Transform

Suppose you have obtained N samples of a signal from a DAQ device. If 
you apply the DFT to N samples of this time-domain representation of the 
signal, the result is also of length N samples, but the information it contains 
is of the frequency-domain representation. 

Relationship between N Samples in the Frequency and Time Domains
If a signal is sampled at a given sampling rate, the time interval between the 
samples, or sampling interval, is given by the following equation.

,

where ∆t is the sampling interval and fs is the sampling rate in samples per 
second (S/s).

Time Domain Representation of x[n] Frequency Domain Representation

DFT

t∆ 1
fs
---=
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The DFT is given by the following equation and results in X[k], the 
frequency-domain representation of the sample signal.

, (2-1)

where x[i] is the time-domain representation of the sample signal and N is 
the total number of samples. Notice that both the time-domain x and the 
frequency-domain X have a total of N samples. 

Analogous to the time spacing of ∆t between the samples of x in the time 
domain, you have a frequency spacing, or frequency resolution, between 
the components of X in the frequency domain, which is given by the 
following equation.

,

where ∆f is the frequency resolution, fs is the sampling rate, N is the number 
of samples, ∆t is the sampling interval, and N∆t is the total acquisition time.

To improve the frequency resolution, that is, a smaller ∆f, you must either 
increase N and keep fs constant or decrease fs and keep N constant. Both of 
the approaches used to improve the frequency resolution are equivalent to 
increasing N∆t, which is the time duration of the acquired samples.

DFT Calculation Example
This section provides an example of using Equation 2-1 to calculate the 
DFT for a DC signal. This example uses the following assumptions:

• X[0] corresponds to the DC component, or the average value, of the 
signal.

• The DC signal has a constant amplitude of +1 V. 

• The number of samples is four samples.

• Each of the samples has a value +1, as shown in Figure 2-3.

• The resulting time sequence for the four samples is given by the 
following equation.

x[0] = x[1] = x[3] = x[4] = 1

X k[ ] x i[ ]e j2πik N⁄–

i 0=

N 1–

∑= for k 0,1,2, … , N 1–=

f∆
fs

N
---- 1

N∆t
----------= =
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Figure 2-3.  DFT Samples

The DFT calculation makes use of Euler’s identity, which is given by the 
following equation.

exp (–iθ) = cos(θ) – jsin(θ)

Using Equation 2-1 to calculate the DFT of the sequence shown in 
Figure 2-3 and making use of Euler’s identity, you get the following 
equations.

where X[0] is the DC component and N is the number of samples.

x[0] x[1] x[2] x[3]

Time
0 1 2 3

+1 V

A
m

pl
itu

de

X 0[ ] xie
j2πi0 N⁄–

i 0=

N 1–

∑ x 0[ ] x 1[ ] x 2[ ] x 3[ ] 4=+ + += =

X 1[ ] x 0[ ] x 1[ ] π
2
--- 
 cos j π

2
--- 
 sin– 

  x 2[ ] π( )cos j π( )sin–( )

x 3[ ] 3π
2

------ 
 cos j 3π

2
------ 
 sin– 

  1 j– 1– j+( ) 0==

+ + +=

X 2[ ] x 0[ ] x 1[ ] π( )cos j π( )sin–( ) x 2[ ] 2π( )cos j 2π( )sin–( )

x 3[ ] 3π( )cos j 3π( )sin–( ) 1 1– 1 1–+( ) 0==

+ + +=

X 3[ ] x 0[ ] x 1[ ] 3π
2

------ 
 cos j 3π

2
------ 
 sin– 

  x 2[ ] 3π( )cos j 3π( )sin–( )

x 3[ ] 9π
2

------ 
 cos j 9π

2
------ 
 sin– 

  1 j– 1– j–( ) 0==

+ + +=
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Therefore, except for the DC component, all other values for the sequence 
shown in Figure 2-3 are zero, which is as expected. However, the calculated 
value of X[0] depends on the value of N. Because in this example N = 4, 
X[0] = 4. If N = 10, the calculation results in X[0] = 10. This dependency of 
X[ ] on N also occurs for the other frequency components. Thus, you 
usually divide the DFT output by N to obtain the correct magnitude of the 
frequency component.

Magnitude and Phase Information
You have seen that N samples of the input signal result in N samples of 
the DFT. That is, the number of samples in both the time and frequency 
representations is the same. From Equation 2-1, you see that regardless 
of whether the input signal x[i] is real or complex, X[k] is always complex, 
although the imaginary part may be zero. In other words, every frequency 
component has a magnitude and phase.

Normally the magnitude of the spectrum is displayed. The magnitude is the 
square root of the sum of the squares of the real and imaginary parts.

The phase is relative to the start of the time record or relative to a 
single-cycle cosine wave starting at the beginning of the time record. 
Single-channel phase measurements are stable only if the input signal is 
triggered. Dual-channel phase measurements compute phase differences 
between channels so that if the channels are simultaneously sampled, 
triggering usually is not necessary.

The phase is the arctangent of the ratio of the imaginary and real parts and 
is usually between π and –π radians, or 180 and –180 degrees.

For real signals (x[i] real), such as those obtained from the output of one 
channel of a DAQ device, the DFT is symmetric with properties given by 
the following equations.

|X[k]| = |X[N–k]|

phase (X[k]) = –phase(X[N–k])

The terms used to describe this symmetry are that the magnitude of X[k] is 
even symmetric, and phase(X[k]) is odd symmetric. An even symmetric 
signal is symmetric about the y-axis, whereas an odd symmetric signal is 
symmetric about the origin. Figure 2-4 illustrates even and odd symmetry.
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Figure 2-4.  Signal Symmetry about the y-axis

The net effect of this symmetry is that there is repetition of information 
contained in the N samples of the DFT. Because of this repetition of 
information, only half of the samples of the DFT actually need to be 
computed or displayed because you can obtain the other half from this 
repetition. If the input signal is complex, the DFT is asymmetrical, and you 
cannot use only half of the samples to obtain the other half.

Frequency Spacing between DFT Samples
If the sampling interval is ∆t seconds, and the first data sample (k = 0) is 
at 0 seconds, then the kth data sample, where k > 0 and an integer, is at k∆t 
seconds. Similarly, if the frequency resolution is ∆f Hz, then the kth sample 
of the DFT occurs at a frequency of k∆f Hz. However, this is valid for only 
up to the first half of the frequency components. The other half represent 
negative frequency components.

Depending on whether the number of samples N is even or odd, you can 
have a different interpretation of the frequency corresponding to the 
kth sample of the DFT. For example, let N = 8 and p represent the index of 
the Nyquist frequency p = N/2 = 4. Table 2-1 shows the ∆f to which each 
format element of the complex output sequence X corresponds.

Table 2-1.  X[p] for N = 8

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] 4∆f (Nyquist frequency)

y

x

y

x

Odd SymmetryEven Symmetry
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The negative entries in the second column beyond the Nyquist frequency 
represent negative frequencies, that is, those elements with an index 
value > p.

For N = 8, X[1] and X[7] have the same magnitude; X[2] and X[6] have the 
same magnitude; and X[3] and X[5] have the same magnitude. The 
difference is that X[1], X[2], and X[3] correspond to positive frequency 
components, while X[5], X[6], and X[7] correspond to negative frequency 
components. X[4] is at the Nyquist frequency.

Figure 2-5 illustrates the complex output sequence X for N = 8.
 

Figure 2-5.  Complex Output Sequence X for N = 8

A representation where you see both the positive and negative frequencies 
is known as the two-sided transform.

When N is odd, there is no component at the Nyquist frequency. Table 2-2 
lists the values of ∆f for X[p] when N = 7 and p = (N–1)/2 = (7–1)/2 = 3.

X[5] –3∆f

X[6] –2∆f

X[7] –∆f

Table 2-1.  X[p] for N = 8 (Continued)

X[p] ∆f

Positive
Frequencies

Negative
Frequencies

Nyquist
Component

DC
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For N = 7, X[1] and X[6] have the same magnitude; X[2] and X[5] have the 
same magnitude; and X[3] and X[4] have the same magnitude. However, 
X[1], X[2], and X[3] correspond to positive frequencies, while X[4], X[5], 
and X[6] correspond to negative frequencies. Because N is odd, there is no 
component at the Nyquist frequency.

Figure 2-6 illustrates the complex output sequence X[p] for N = 7.
 

Figure 2-6.  Complex Output Sequence X[p] for N = 7

This is also a two-sided transform because you have both the positive and 
negative frequencies.

Table 2-2.  X[p] for N = 7

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] –3∆f

X[5] –2∆f

X[6] –∆f

Positive
Frequencies

Negative
Frequencies

DC



Chapter 2 Frequency Analysis

LabVIEW Analysis Concepts 2-10 ni.com

FFT Fundamentals
Direct implementation of the DFT on N data samples requires 
approximately N2 complex operations and is a time-consuming process. 
The FFT is a fast algorithm for calculating the DFT when N is a power 
of two.

Computing Frequency Components
Each frequency component is the result of a dot product of the time domain 
signal with the complex exponential at that frequency and is given by the 
following equation.

The DC component is the dot product of x(n) with [cos(0) – jsin(0)], or 
with 1.0.

The first bin, or frequency component, is the dot product of x(n) with 
cos(2πn/N) – jsin(2πn/N). Here, cos(2πn/N) is a single cycle of the cosine 
wave, and sin(2πn/N) is a single cycle of a sine wave.

In general, bin k is the dot product of x(n) with k cycles of the cosine wave 
for the real part of X(k) and the sine wave for the imaginary part of X(k).

The use of the FFT for frequency analysis implies two important 
relationships.

The first relationship links the highest frequency that can be analyzed to the 
sampling frequency and is given by the following equation.

,

where Fmax is the highest frequency that can be analyzed and fs is the 
sampling frequency. Refer to the Aliasing section of this chapter for more 
information about Fmax.

X k( ) x n( )e
j 2πnk

N
------------- 
 –

n 0=

N 1–

∑ x n( ) 2πnk
N

------------- 
 cos j 2πnk

N
------------- 
 sin–

n 0=

N 1–

∑= =

Fmax
fs

2
---=
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The second relationship links the frequency resolution to the total 
acquisition time, which is related to the sampling frequency and the block 
size of the FFT and is given by the following equation.

,

where ∆f is the frequency resolution, T is the acquisition time, fs is the 
sampling frequency, and N is the block size of the FFT.

Fast FFT Sizes
When the size of the input sequence is a power of two, N = 2m for m = 1, 2, 
3, …, you can implement the computation of the DFT with approximately 
N log2(N) operations, which makes the calculation of the DFT much faster. 
DSP literature refers to the algorithms for faster DFT calculation as fast 
Fourier transforms (FFTs). Examples of sequence sizes where you can use 
this algorithm are 512, 1,024, and 2,048. 

The advantages of the FFT include speed and memory efficiency because 
the VI can compute the FFT in place. That is, no additional memory buffers 
are needed to compute the output. Conversely, the DFT can efficiently 
process any size sequence but is slower than the FFT and uses more 
memory because it must allocate additional buffers for storing intermediate 
results during processing.

In addition, another optimized algorithm is used for short DFTs of lengths 
2, 3, 4, 5, 8, and 10. As a result, when the size of the sequence is not a power 
of two, but can be factored as

N = 2m3k5j for m, k, j = 0, 1, 2, 3, …,

the DFT can be computed with speeds comparable to the radix-2 FFT but 
requires more memory. You can use the optimized algorithm for sequence 
sizes such as 640, 480, 1,000, and 2,000.

When the sequence size cannot be factored into sizes that are in the set of 
short DFTs, a Chirp-Z implementation of the DFT is used. The Chirp-Z 
implementation is much faster than the direct evaluation of the DFT 
expression. The Chirp-Z algorithm uses more memory than the 
prime-factor algorithms because it must allocate additional buffers for 
storing intermediate results during processing.

f∆ 1
T
---

fs

N
----= =
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Zero Padding
Zero padding is a technique employed to make the size of the input 
sequence equal to a power of two. In zero padding, you add zeros to the end 
of the input sequence so that the total number of samples is equal to the next 
higher power of two. For example, if you have 10 samples of a signal, you 
can add six zeros to make the total number of samples equal to 16, or 24, 
which is a power of two. Figure 2-7 illustrates padding 10 samples of a 
signal with zeros to make the total number of samples equal 16.

 

Figure 2-7.  Zero Padding

The addition of zeros to the end of the time-domain waveform does 
not affect the spectrum of the signal. In addition to making the total number 
of samples a power of two so that faster computation is made possible 
by using the FFT, zero padding also helps in improving the frequency 
resolution by increasing the number of samples, N. Recall that ∆f = fs/N. By 
increasing N, you decrease ∆f, which improves the frequency resolution.

FFT VIs
The Frequency Domain palette contains two VIs that compute the FFT of 
a signal, the Real FFT VI and the Complex FFT VI.

The difference between the two VIs is that the Real FFT VI computes the 
FFT of a real-valued signal, whereas the Complex FFT VI computes the 
FFT of a complex-valued signal. However, keep in mind that the outputs of 
both VIs are complex.
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Most real-world signals are real-valued. Therefore, you can use the 
Real FFT VI for most applications. Of course, you also could use the 
Complex FFT VI by setting the imaginary part of the signal to zero. 
An example of an application where you use the Complex FFT VI is when 
the signal consists of both a real and an imaginary component. A signal 
consisting of a real and an imaginary component occurs frequently in the 
field of telecommunications, where you modulate a waveform by a 
complex exponential. The process of modulation by a complex exponential 
results in a complex signal, as shown in Figure 2-8.

 

Figure 2-8.  Modulation by a Complex Exponential

Power Spectrum
As discussed in the Magnitude and Phase Information section, the DFT or 
FFT of a real signal is a complex number, having a real and an imaginary 
part. You can obtain the power in each frequency component represented 
by the DFT or FFT by squaring the magnitude of that frequency 
component. Thus, the power in the kth frequency component, that is, the 
kth element of the DFT or FFT, is given by the following equation.

power = |X[k]|2,

where |X[k]| is the magnitude of the frequency component. Refer to the 
Magnitude and Phase Information section of this chapter for information 
about computing the magnitude of the frequency components.

The plot showing the power in each of the frequency components is known 
as the power spectrum. Because the DFT or FFT of a real signal is 
symmetric, the power at a positive frequency of k∆f is the same as the power 
at the corresponding negative frequency of –k∆f, excluding DC and Nyquist 
components. The total power in the DC component is |X[0]|2. The total 
power in the Nyquist component is |X[N/2]|2.

Modulation by
exp(–j   t)

ωx(t) ωωy(t) = x(t)cos(  t) – jx(t)sin(  t)
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Loss of Phase Information
Because the power is obtained by squaring the magnitude of the DFT or 
FFT, the power spectrum is always real. The disadvantage of obtaining the 
power by squaring the magnitude of the DFT or FFT is that the phase 
information is lost. If you want phase information, you must use the DFT 
or FFT, which gives you a complex output.

You can use the power spectrum in applications where phase information is 
not necessary, such as calculating the harmonic power in a signal. You can 
apply a sinusoidal input to a nonlinear system and see the power in the 
harmonics at the system output.

Using the Power Spectrum VI
You can use the Power Spectrum VI to calculate the power spectrum of the 
time domain data samples. Just like the DFT and FFT, the number of 
samples from the Power Spectrum VI output is the same as the number of 
data samples applied at the input. Also, the frequency spacing between the 
output samples is given by the following equation.

Frequency Response Function
When analyzing two simultaneously sampled channels, you usually want 
to know the differences between the two channels rather than the properties 
of each.

In a typical dual-channel analyzer, as shown in Figure 2-9, the 
instantaneous spectrum is computed using a window function and the FFT 
for each channel. The averaged FFT spectrum, auto power spectrum, and 
cross power spectrum are computed and used in estimating the frequency 
response function. You also can use the coherence function to check the 
validity of the frequency response function.

∆ f
fs

N
----=
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Figure 2-9.  Dual-Channel Frequency Analysis

The frequency response of a system is described by the magnitude, |H|, and 
phase, ∠H, at each frequency. The gain of the system is the same as its 
magnitude and is the ratio of the output magnitude to the input magnitude 
at each frequency. The phase of the system is the difference of the output 
phase and input phase at each frequency.

Aliasing
According to Shannon’s sampling theorem, the highest frequency you can 
analyze in an input sequence is the Nyquist frequency. The Nyquist 
frequency is given by the following equation.

, 

where fN is the Nyquist frequency and fs is the sampling frequency.

Any analog frequency greater than fN after sampling appears as a frequency 
between 0 and fN. Such a frequency is known as an alias frequency. In the 
digital, or sampled, domain, there is no way to distinguish alias frequencies 
from the frequencies that actually lie between 0 and fN. Therefore, alias 
frequencies need to be removed from the analog signal before sampling by 
the A/D converter.

Frequency
Response
Function

Coherence

Time FFT

Time FFT

Cross
Spectrum

Auto
Spectrum

Auto
Spectrum

Window

Average

Average

AverageAverage

Average

Window
Ch A

Ch B

fN
fs

2
---=
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In order to remove alias frequencies present at frequencies higher than the 
Nyquist frequency, you must use an analog lowpass filter. The anti-aliasing 
analog lowpass filter should exhibit a flat passband frequency response 
with a good high-frequency alias rejection and a fast roll-off in the 
transition band.

Refer to Chapter 1, Introduction to Measurement Analysis in LabVIEW, for 
more information about aliasing.

Windowing
In practical applications, you obtain only a finite number of samples of the 
signal. The FFT assumes that this time record repeats. If you have an 
integral number of cycles in your time record, the repetition is smooth at 
the boundaries. However, in practical applications, you usually have a 
nonintegral number of cycles. In the case of a nonintegral number of cycles, 
the repetition results in discontinuities at the boundaries. These artificial 
discontinuities were not originally present in your signal and result in a 
smearing or leakage of energy from your actual frequency to all other 
frequencies. This phenomenon is known as spectral leakage. The amount 
of leakage depends on the amplitude of the discontinuity, with a larger 
amplitude causing more leakage.

A signal that is exactly periodic in the time record is composed of sine 
waves with exact integral cycles within the time record. Such a perfectly 
periodic signal has a spectrum with energy contained in exact frequency 
bins.

A signal that is not periodic in the time record has a spectrum with energy 
split or spread across multiple frequency bins. The FFT spectrum models 
the time domain as if the time record repeated itself forever. It assumes that 
the analyzed record is just one period of an infinitely-repeating periodic 
signal. 

Because the amount of leakage is dependent on the amplitude of the 
discontinuity at the boundaries, you can use windowing to reduce the size 
of the discontinuity and hence reduce spectral leakage. Windowing consists 
of multiplying the time-domain signal by another time-domain waveform, 
known as a window, whose amplitude tapers gradually and smoothly 
towards zero at edges. The result is a windowed signal with very small or 
no discontinuities, and therefore reduced spectral leakage. You can choose 
from among many different types of windows. The one you choose depends 
on your application and some prior knowledge of the signal you are 
analyzing.
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Refer to Chapter 5, Smoothing Windows, for more information abut 
windowing.

Averaging to Improve the Measurement
Averaging successive measurements usually improves measurement 
accuracy. Averaging is usually performed on measurement results or on 
individual spectra, but not directly on the time record.

You can choose from among the following common averaging modes:

• RMS averaging

• Vector averaging

• Peak hold

RMS Averaging
RMS averaging reduces signal fluctuations but not the noise floor. The 
noise floor is not reduced because RMS averaging averages the energy, or 
power, of the signal. RMS averaging also causes averaged RMS quantities 
of single-channel measurements to have zero phase. RMS averaging for 
dual-channel measurements preserves important phase information. RMS 
averaged measurements are computed according to the following 
equations.

where X is the complex FFT of signal x (stimulus),

Y is the complex FFT of signal y (response),

X* is the complex conjugate of X,

FFT spectrum

power spectrum

cross spectrum

frequency response  

 

X∗ X•〈 〉

X∗ X•〈 〉

X∗ Y•〈 〉

H1 X∗ Y•〈 〉
X∗ X•〈 〉

---------------------=

H2 Y∗ Y•
Y∗ X•
---------------〈 〉=

H3 H1 H2+( )
2

--------------------------=
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Y* is the complex conjugate of Y,

 is the average of X, real and imaginary parts being averaged separately.

Vector Averaging
Vector averaging eliminates noise from synchronous signals. Vector 
averaging computes the average of complex quantities directly. The real 
part is averaged separately from the imaginary part. Averaging the real part 
separately from the imaginary part can reduce the noise floor for random 
signals because random signals are not phase-coherent from one time 
record to the next. The real and imaginary parts are averaged separately, 
reducing noise but usually requiring a trigger.

where X is the complex FFT of signal x (stimulus),

Y is the complex FFT of signal y (response),

X* is the complex conjugate of X,

is the average of X, real and imaginary parts being averaged separately.

Peak Hold
Peak hold averaging retains the peak levels of the averaged quantities. Peak 
hold is performed at each frequency line separately, retaining peak levels 
from one FFT record to the next.

where X is the complex FFT of signal x (stimulus), and 

X* is the complex conjugate of X.

FFT spectrum

power spectrum

cross spectrum

frequency response  (H1 = H2 = H3)

FFT spectrum

power spectrum

X〈 〉

X〈 〉

X∗〈 〉 X〈 〉•

X∗〈 〉 Y〈 〉•
Y〈 〉
X〈 〉

---------

X〈 〉

MAX X∗ X•( )

MAX X∗ X•( )
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Weighting
When performing RMS or vector averaging, you can weight each new 
spectral record using either linear or exponential weighting.

Linear weighting combines N spectral records with equal weighting. When 
the number of averages is completed, the analyzer stops averaging and 
presents the averaged results. 

Exponential weighting emphasizes new spectral data more than old and is 
a continuous process.

Weighting is applied according to the following equation.

,

where Xi is the result of the analysis performed on the ith block,

Yi is the result of the averaging process from X1 to Xi,

N = i for linear weighting,

N is a constant for exponential weighting (N = 1 for i = 1).

Summary
Frequency analysis is a general-purpose tool used for a wide variety of 
applications dealing with dynamic signals, including electrical and 
mechanical engineering, sound and vibration measurements, production 
testing, and biomedical applications.

You can convert the time-domain representation, or sample values, of a 
signal into the frequency-domain representation by means of an algorithm 
known as the discrete Fourier transform (DFT). To have fast calculation of 
the DFT, an algorithm known as the fast Fourier transform (FFT) is used. 
You can use the FFT when the number of signal samples is a power of two.

The DFT, FFT, and power spectrum are useful for measuring the frequency 
content of stationary or transient signals. The FFT provides the average 
frequency content of the signal over the entire time that the signal was 
acquired.

The output of the conventional DFT or FFT is two-sided because it contains 
information about both the positive and the negative frequencies. You can 

Yi
N 1–

N
-------------Yi 1–

1
N
----Xi+=
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convert the two-sided output of the conventional DFT or FFT into a 
one-sided DFT or FFT by using only half the DFT or FFT output points. 
The frequency spacing between the samples of the DFT or FFT is given by 
the following equation.

You can calculate the power spectrum from the DFT or FFT by squaring the 
magnitude of the individual frequency components. The Power Spectrum 
VI in the advanced analysis library does this automatically for you. The 
units of the output of the Power Spectrum VI are in V2

rms. However, the 
power spectrum does not provide any phase information.

∆ f
fs

N
----=
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3
Signal Generation

The generation of signals is an important part of any test or measurement 
system. Common test signals include the sine wave, the square wave, the 
triangle wave, the sawtooth wave, several types of noise waveforms, and 
multitone signals consisting of a superposition of sine waves. This chapter 
discusses some of the fundamentals of signal generation.

The following applications are examples of uses for signal generation:

• Simulate signals to test your algorithm when real-world signals are not 
available, for example, when you do not have a DAQ device for 
obtaining real-world signals, or when access to real-world signals is 
not possible.

• Generate signals to apply to a digital-to-analog (D/A) converter.

Common Test Signals
The most common signal for audio testing is the sine wave. A single sine 
wave is often used to determine the amount of harmonic distortion 
introduced by a system. Multiple sine waves are widely used to measure the 
intermodulation distortion or to determine the frequency response. The 
following table lists the signals used for some typical measurements.

Table 3-1.  Typical Measurements and Signals

Measurement Signal

Total Harmonic Distortion Sine wave

Intermodulation Distortion Multitone (two sine waves)

Frequency Response Multitone (many sine waves, 
Impulse, Chirp)

Interpolation Sinc

Rise Time, Fall Time, 
Overshoot, Undershoot

Pulse

Jitter Square wave
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These signals form the basis for many tests and are used to measure the 
response of a system to a particular stimulus. Some of the common test 
signals available in most signal generators are shown in Figure 3-1 and 
Figure 3-2.

Figure 3-1.  Common Test Signals

1 Sine Wave
2 Square Wave
3 Triangle Wave

4 Sawtooth Wave
5 Ramp
6 Impulse

1 2

43

5 6
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Figure 3-2.  More Common Test Signals

The most useful way to view these signals is in terms of their frequency 
content. For example, a sine wave has a single frequency component. 
A square wave consists of the superposition of many sine waves at odd 
harmonics of the fundamental frequency. The amplitude of each harmonic 
is inversely proportional to its frequency. Similarly, the triangle and 
sawtooth waves also have harmonic components that are multiples of the 
fundamental frequency. An impulse contains all frequencies that can be 
represented for a given sampling rate and number of samples. Chirp 
patterns have discrete frequencies that lie within a certain range. The 
discrete frequencies of chirp patterns depend on the sampling rate, the start 
and end frequencies, and the number of samples.

7 Sinc 8 Pulse 9 Chirp

8

9

7
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Multitone Generation
The common test signals, except for the sine wave, do not allow full control 
over their spectral content. For example, the harmonic components of a 
square wave are fixed in frequency, phase, and amplitude relative to the 
fundamental. On the other hand, you can generate multitone signals with a 
specific amplitude and phase for each individual frequency component.

A multitone signal is the superposition of several sine waves or tones, each 
with a distinct amplitude, phase, and frequency. A multitone signal is 
typically created so that an integer number of cycles of each individual tone 
are contained in the signal. If an FFT of the entire multitone signal is 
computed, then each of the tones falls exactly onto a single frequency bin, 
which means no spectral spread or leakage occurs.

Multitone signals are a part of many test specifications and allow the fast 
and efficient stimulus of a system across an arbitrary band of frequencies. 
Multitone test signals are used to determine the frequency response of a 
device, and with appropriate selection of frequencies, also can be used to 
measure such quantities as intermodulation distortion.

Crest Factor
The relative phases of the constituent tones with respect to each other 
determines the crest factor of a multitone signal with specified amplitude. 
The crest factor is defined as the ratio of the peak magnitude to the RMS 
value of the signal. For example, a sine wave has a crest factor of 1.414:1. 

For the same maximum amplitude, a multitone signal with a large crest 
factor contains less energy than one with a smaller crest factor. Another 
way to express this is to say that a large crest factor means that the 
amplitude of a given component sine tone is lower than the same sine tone 
in a multitone signal with a smaller crest factor. A higher crest factor results 
in individual sine tones with lower signal-to-noise ratios. Therefore, proper 
selection of phases is critical to generating a useful multitone signal. 

To avoid clipping, the maximum value of the multitone signal should not 
exceed the maximum capability of the hardware that generates the signal 
which means a limit is placed on the maximum amplitude of the signal. You 
can generate a multitone signal with a specific amplitude by different 
combinations of the phase relationships and amplitudes of the constituent 
sine tones. A good approach to generating a signal is to choose amplitudes 
and phases that result in a lower crest factor. 
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Phase Generation
The following schemes are used to generate tone phases of multitone 
signals:

• Varying the phase difference between adjacent frequency tones 
linearly from 0 to 360 degrees

• Varying the tone phases randomly

Varying the phase difference between adjacent frequency tones linearly 
from 0 to 360 degrees allows the creation of multitone signals with very low 
crest factors. However, the resulting multitone signals possess the 
following potentially undesirable characteristics:

• The multitone signal is very sensitive to phase distortion. If in the 
course of generating the multitone signal the hardware or signal path 
induces non-linear phase distortion, the crest factor can vary 
considerably.

• The multitone signal might display some repetitive time-domain 
characteristics that possibly are undesirable, as shown in the multitone 
signal in Figure 3-3. 

Figure 3-3.  Multitone Signal with Linearly Varying Phase Difference
between Adjacent Tones

Notice that the signal in Figure 3-3 resembles a chirp signal in that its 
frequency appears to decrease from left to right. The apparent decrease in 
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frequency from left to right is characteristic of multitone signals generated 
by linearly varying the phase difference between adjacent frequency tones. 
Having a signal that is more noise-like than the signal in Figure 3-3 is often 
more desirable.

Varying the tone phases randomly results in a multitone signal whose 
amplitudes are nearly Gaussian in distribution as the number of tones 
increases. Figure 3-4 illustrates a signal created by varying the tone phases 
randomly.

Figure 3-4.  Multitone Signal with Random Phase Difference between Adjacent Tones

In addition to being more noise-like, the signal in Figure 3-4 is also much 
less sensitive to phase distortion. Multitone signals with the sort of phase 
relationship shown in Figure 3-4 generally achieve a crest factor between 
10 and 11 dB.
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Swept Sine versus Multitone
To characterize a system, you often must measure the response of the 
system at many different frequencies. You can use the following methods 
to measure the response of a system at many different frequencies:

• Swept sine continuously and smoothly changes the frequency of a sine 
wave across a range of frequencies.

• Stepped sine provides a single sine tone of fixed frequency as the 
stimulus for a certain time and then increments the frequency by a 
discrete amount. The process is continued until all the frequencies of 
interest have been reached.

• Multitone provides a signal composed of multiple sine tones.

A multitone signal has significant advantages over the swept sine and 
stepped sine approaches. For a given range of frequencies, the multitone 
approach can be much faster than the equivalent swept sine measurement, 
due mainly to settling time issues. For each sine tone in a stepped sine 
measurement, you must wait for the settling time of the system to end 
before starting the measurement.

The settling time issue for a swept sine can be even more complex. If the 
system has low-frequency poles and/or zeroes or high Q-resonances, the 
system might take a relatively long time to settle. For a multitone signal, 
you must wait only once for the settling time. A multitone signal containing 
one period of the lowest frequency, actually one period of the highest 
frequency resolution, is enough for the settling time. Once the response to 
the multitone signal is acquired, the processing can be very fast. You can 
use a single FFT to measure many frequency points, amplitude and phase, 
simultaneously.

The swept sine approach is more appropriate than the multitone approach 
in certain situations. Each measured tone within a multitone signal is more 
sensitive to noise because the energy of each tone is lower than that in a 
single pure tone. For example, consider a single sine tone of amplitude 
10 V peak and frequency 100 Hz. A multitone signal containing 10 tones, 
including the 100 Hz tone, might have a maximum amplitude of 10 V. 
However, the 100 Hz tone component has an amplitude somewhat less than 
10 V. The lower amplitude of the 100 Hz tone component is due to the way 
that all the sine tones sum. Assuming the same level of noise, the 
signal-to-noise ratio (SNR) of the 100 Hz component is better for the case 
of the swept sine approach. In the multitone approach, you can mitigate the 
reduced SNR by adjusting the amplitudes and phases of the tones, applying 
higher energy where needed, and applying lower energy at less critical 
frequencies.



Chapter 3 Signal Generation

LabVIEW Analysis Concepts 3-8 ni.com

When viewing the response of a system to a multitone stimulus, any energy 
between FFT bins is due to noise or unit-under-test (UUT) induced 
distortion. The frequency resolution of the FFT is limited by your 
measurement time. If you only want to measure your system at 1.000 kHz 
and 1.001 kHz, using two independent sine tones is the best approach. 
Using two independent sine tones, you can perform the measurement in a 
few milliseconds, while a multitone measurement requires at least 
one second. The difference in measurement speed is because you must wait 
long enough to obtain the required number of samples to achieve a 
frequency resolution of 1 Hz. Some applications, such as finding the 
resonant frequency of a crystal, combine a multitone measurement for 
coarse measurement and a narrow-range sweep for fine measurement.

Noise Generation
You can use noise signals to perform frequency response measurements, or 
to simulate certain processes. Several types of noise are typically used, 
namely Uniform White Noise, Gaussian White Noise, and Periodic 
Random Noise. 

The term white in the definition of noise refers to the frequency domain 
characteristic of noise. Ideal white noise has equal power per unit 
bandwidth, resulting in a flat power spectral density across the frequency 
range of interest. Thus, the power in the frequency range from 100 Hz to 
110 Hz is the same as the power in the frequency range from 1,000 Hz to 
1,010 Hz. In practical measurements, achieving the flat power spectral 
density requires an infinite number of samples. Thus, when making 
measurements of white noise, the power spectra are usually averaged, with 
more number of averages resulting in a flatter power spectrum. 

The terms uniform and Gaussian refer to the probability density function 
(PDF) of the amplitudes of the time-domain samples of the noise. For 
uniform white noise, the PDF of the amplitudes of the time domain samples 
is uniform within the specified maximum and minimum levels. Another 
way to state this is to say that all amplitude values between some limits are 
equally likely or probable. Thermal noise produced in active components 
tends to be uniform white in distribution. Figure 3-5 shows the distribution 
of the samples of uniform white noise.
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Figure 3-5.  Uniform White Noise

For Gaussian white noise, the PDF of the amplitudes of the time domain 
samples is Gaussian. If uniform white noise is passed through a linear 
system, the resulting output is Gaussian white noise. Figure 3-6 shows the 
distribution of the samples of Gaussian white noise.

Figure 3-6.  Gaussian White Noise

Periodic random noise (PRN) is a summation of sinusoidal signals with the 
same amplitudes but with random phases. PRN consists of all sine waves 
with frequencies that can be represented with an integral number of cycles 
in the requested number of samples. Since PRN contains only 
integral-cycle sinusoids, you do not need to window PRN before 
performing spectral analysis because PRN is self-windowing and therefore 
has no spectral leakage. 

PRN does not have energy at all frequencies, as white noise does, but only 
at discrete frequencies which correspond to harmonics of a fundamental 



Chapter 3 Signal Generation

LabVIEW Analysis Concepts 3-10 ni.com

frequency. The fundamental frequency is equal to the sampling frequency 
divided by the number of samples. However, the level of noise at each of 
the discrete frequencies is the same.

You can use PRN to compute the frequency response of a linear system 
with one time record instead of averaging the frequency response over 
several time records, as you must for nonperiodic random noise sources. 
Figure 3-7 shows the spectrum of periodic random noise and the averaged 
spectra of white noise.

Figure 3-7.  Spectral Representation of Periodic Random Noise and
Averaged White Noise
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Normalized Frequency
In the analog world, a signal frequency is measured in hertz (Hz), or cycles 
per second. But the digital system often uses a digital frequency, which is 
the ratio between the analog frequency and the sampling frequency, as 
shown by the following equation.

The digital frequency is known as the normalized frequency and is 
measured in cycles per sample.

Some of the Signal Generation VIs use an input frequency control f that 
is assumed to use normalized frequency units of cycles per sample. The 
normalized frequency ranges from 0.0 to 1.0, which corresponds to a real 
frequency range of 0 to the sampling frequency fs. The normalized 
frequency also wraps around 1.0, so that a normalized frequency of 1.1 is 
equivalent to 0.1. For example, a signal sampled at the Nyquist rate of fs/2 
means it is sampled twice per cycle, that is, two samples/cycle. This 
sampling rate corresponds to a normalized frequency of 
1/2 cycles/sample = 0.5 cycles/sample. The reciprocal of the normalized 
frequency, 1/f, gives you the number of times the signal is sampled in one 
cycle, that is, the number of samples per cycle.

When you use a VI that requires the normalized frequency as an input, you 
must convert your frequency units to the normalized units of cycles per 
sample. You must use normalized units of cycles per sample with the 
following signal generation VIs:

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert 
cycles to cycles per sample by dividing cycles by the number of samples 
generated.

digital frequency analog frequency
sampling frequency
-----------------------------------------------=
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You need only divide the frequency in cycles by the number of samples. For 
example, a frequency of 2 cycles is divided by 50 samples, resulting in a 
normalized frequency of f = 1/25 cycles/sample. This means that it takes 25, 
the reciprocal of f, samples to generate one cycle of the sine wave.

However, you may need to use frequency units of Hz, cycles per second. If 
you need to convert from Hz to cycles per sample, divide your frequency in 
Hz by the sampling rate given in samples per second, as shown in the 
following equation.

For example, you divide a frequency of 60 Hz by a sampling rate of 
1,000 Hz to get the normalized frequency of f = 0.06 cycles/sample. 
Therefore, it takes almost 17, 1/0.06, samples to generate one cycle of 
the sine wave.

The signal generation VIs create many common signals required for 
network analysis and simulation. You also can use the signal generation 
VIs in conjunction with National Instruments hardware to generate analog 
output signals.

Wave and Pattern VIs
The names of most of the signal generation VIs contain the word wave or 
pattern. A basic difference exists between the operation of the two different 
types of VIs. The difference has to do with whether the VI can keep track 
of the phase of the signal it generates each time the VI is called.

Phase Control
The wave VIs have a phase in control where you can specify the initial 
phase, in degrees, of the first sample of the generated waveform. The wave 
VIs also have a phase out indicator that specifies what the phase of the next 
sample of the generated waveform is going to be. In addition, a reset phase 
control specifies whether the phase of the first sample generated when the 
wave VI is called is the phase specified in the phase in control or the phase 
available at the phase out control when the VI last executed. A TRUE 
value of reset phase sets the initial phase to phase in. A FALSE value of 
reset phase sets the initial phase to the value of phase out when the VI last 
executed.

cycles per second
samples per second
----------------------------------------------- cycles

sample
-----------------=
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All of the wave VIs are reentrant, which means they can keep track of phase 
internally. The Wave VIs accept frequency in normalized units of cycles per 
sample. The only pattern VI that presently uses normalized units is the 
Chirp Pattern VI. Setting the reset phase Boolean to FALSE allows for 
continuous sampling simulation.
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4
Digital Filtering

This chapter introduces the concept of filtering, compares analog and 
digital filters, discusses Finite Infinite Response (FIR) and Infinite Impulse 
Response (IIR) filters, and helps you determine how to choose the most 
appropriate digital filter.

What Is Filtering?
Filtering is the process by which the frequency content of a signal is altered. 
The implicit assumption is that the signal content of interest is separable 
from the raw signal. Classical linear filtering assumes that the signal 
content of interest is distinct from the remainder of the signal in the 
frequency domain (Fourier Transform). Filtering is one of the most 
commonly used signal processing techniques. For example, consider 
the bass and treble controls on your stereo system. The bass control alters 
the low-frequency content of a signal, and the treble control alters the 
high-frequency content. By varying these controls, you are filtering 
the audio signal. Removing noise and performing decimation (lowpass 
filtering the signal and reducing the sample rate) are other filtering 
applications.

Advantages of Digital Filtering Over Analog Filtering
An analog filter has an analog signal at both its input and its output. Both 
the input, x(t), and output, y(t), are functions of a continuous variable t and 
can have an infinite number of values. Analog filter design is about 
50 years older than digital filter design. This type of filter design is often 
reserved for specialists because it requires advanced mathematical 
knowledge and understanding of the processes involved in the system 
affecting the filter. Modern sampling and digital signal processing tools 
have made it possible to replace analog filters with digital filters in 
applications that require flexibility and programmability, such as audio, 
telecommunications, geophysics, and medical monitoring.
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Some advantages of digital filters over analog filters include the following:

• Digital filters are software programmable and therefore are easy to 
build and test.

• Digital filters require only the arithmetic operations of multiplication 
and addition/subtraction and therefore are easier to implement.

• Digital filters do not drift with temperature or humidity or require 
precision components.

• Digital filters have a superior performance-to-cost ratio.

• Digital filters do not suffer from manufacturing variations or aging.

Common Digital Filters
Digital filters can be classified in many ways. The traditional approach is 
to first classify a filter based on the values upon which it operates. The 
simplest filters are those that operate on input values only. These filters are 
called Moving Average (MA) filters or Finite Impulse Response (FIR) 
filters. These filters perform a convolution of the filter coefficients with a 
sequence of input values, producing an equally numbered sequence of 
output values. The term FIR is used because if a single impulse is present 
at the input of the filter and all subsequent inputs are zero, then the output 
of the filter becomes zero after some finite time, equal to the number of 
filter coefficients.

If a filter operates on current and previous input values and current and 
previous output values, then the filter is termed Infinite Impulse Response 
(IIR) or Auto Regressive Moving Average (ARMA). The impulse response 
of such a filter is infinite in the sense that the response of the filter to an 
impulse never goes to zero.

Each type of filter has advantages and disadvantages. Filter design, as with 
all other engineering practices, involves tradeoffs. FIR filters are simple, 
and can be designed to provide a linear phase response or constant group 
delay. IIR filters can achieve the same level of attenuation as FIR filters 
with far fewer coefficients. This means that the IIR filter can be 
significantly faster and more efficient.
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Ideal Filters
Filters alter or remove unwanted frequencies. Depending on the frequency 
range that they either pass or attenuate (reject), they can be classified into 
the following types:

• A lowpass filter passes low frequencies but attenuates high 
frequencies.

• A highpass filter passes high frequencies but attenuates low 
frequencies.

• A bandpass filter passes a certain band of frequencies.

• A bandstop filter attenuates a certain band of frequencies.

The ideal frequency response of these filters is shown in Figure 4-1.

Figure 4-1.  Ideal Frequency Response

The lowpass filter passes all frequencies below fc, whereas the highpass 
filter passes all frequencies above fc. The bandpass filter passes all 
frequencies between fc1 and fc2, whereas the bandstop filter attenuates all 
frequencies between fc1 and fc2. The frequency points fc, fc1, and fc2 are 
known as the cut-off frequencies of the filter. When designing filters, you 
need to specify these cut-off frequencies.

The frequency range that is passed through the filter is known as the 
passband (PB) of the filter. An ideal filter has a gain of one (0 dB) in the 
passband so that the amplitude of the signal neither increases nor decreases. 
The stopband (SB) corresponds to that range of frequencies that do not pass 
through the filter at all and are attenuated. The passband and the stopband 
for the different types of filters are shown in Figure 4-2.
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Figure 4-2.  Passband and Stopband

Notice that while the lowpass and highpass filters have one passband and 
one stopband, the bandpass filter has one passband and two stopbands, and 
the bandstop filter has two passbands and one stopband.

Practical (Nonideal) Filters
Ideally, a filter should have a unit gain (0 dB) in the passband, and a gain 
of zero (–infinity dB) in the stopband. However, in a real implementation, 
not all of these criteria can be fulfilled. In practice, there is always a finite 
transition region between the passband and the stopband. In this region, 
the gain of the filter changes gradually from one (0 dB) in the passband to 
zero (–infinity dB) in the stopband.

Transition Band
The following diagrams show the passband, the stopband, and the 
transition region (TR) for the different types of nonideal filters. In each plot 
in Figure 4-3, the x-axis represents frequency, and the y-axis represents the 
magnitude of the filter in dB. Notice that the passband is now the region 
where the frequency range within which the gain of the filter varies from 
0 dB to –3 dB.
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Figure 4-3.  Nonideal Filters

Passband Ripple and Stopband Attenuation
In many applications, you can allow the gain in the passband to vary 
slightly from unity. This variation in the passband is called the passband 
ripple and is the difference between the actual gain and the desired gain of 
unity. The stopband attenuation, in practice, cannot be infinite, and you 
must specify a value with which you are satisfied. Both the passband ripple 
and the stopband attenuation are measured in decibels (dB), defined by the 
equation:

where log denotes the base 10 logarithm, and Ai(f) and Ao(f) are the 
amplitudes at a particular frequency f before and after the filtering, 
respectively.
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For example, for –0.02 dB passband ripple, the formula gives:

which shows that the ratio of input and output amplitudes is close to unity.

You can view practical filter design as approximating the ideal desired 
magnitude response subject to certain constraints. The ideal passband and 
stopband are flat and constant. Practical filter passbands and stopbands may 
have ripples. Ideal filters have no transition region. Practical filters have 
transition regions. Practical filter design allows tradeoffs between these 
different components (passband ripple, stopband ripple, stopband 
attenuation, transition region width) subject to the filter structure (FIR or 
IIR) and the design algorithm.

FIR Filters
FIR filters have several different design methods. FIR filters have ripple in 
the magnitude response, so the design problem can be restated as how you 
can design a filter that has a magnitude response as close to the ideal as 
possible and distributes the ripple in a desired fashion. For example, a 
lowpass filter has an ideal characteristic magnitude response. A particular 
application may allow some ripple in the passband and more ripple in the 
stopband. The filter design algorithm should balance the relative ripple 
requirements while producing the sharpest transition region.

The simplest approach is the Windowed FIR design. The Windowed FIR 
design takes the inverse FFT of the desired magnitude response and applies 
a time domain window to the result. The advantages of this method are 
conceptual simplicity and ease of implementation. The disadvantages are 
the inefficiency and difficulty in specification. For a given number of taps, 
the Windowed FIR design does not distribute ripple equally and has a wider 
transition band than other designs. It also is difficult to specify a cut-off 
frequency that has a particular attenuation. To design a Windowed FIR 
filter, you must specify the ideal cut-off frequency, the sampling frequency, 
the number of taps, and the window type.
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The other main FIR design approach uses the Parks-McClellan algorithm, 
also known as Remez Exchange. This is an iterative algorithm that 
produces filters with a magnitude response for which the weighted ripple is 
evenly distributed over the passband and stopband and that have a sharp 
transition region. The advantage of this approach is the optimal response of 
the designed filter. The disadvantages are the complexity and length of time 
required to design. Park-McClellan design time is much longer than the 
Windowed approach. A specialization of the Parks-McClellan approach is 
equiripple FIR design. The only difference between them is the equiripple 
design weights the passband and stopband ripple equally. To design an FIR 
filter using the equiripple approach, you must specify the cut-off frequency, 
the number of taps, the filter type, and pass and stop frequencies. The 
cut-off frequency for equiripple designs specifies the edge of the passband 
and/or the stopband. Equiripple filters have a ripple in the passband that 
causes the magnitude response in the passband to be greater than or equal 
to 1. Similarly, the magnitude response in the stopband is always less than 
or equal to the stopband attenuation. For example, if you specify a lowpass 
filter, the passband cut-off frequency is the highest or largest frequency for 
which the passband conditions hold true. Similarly, the stopband cut-off is 
the lowest frequency for which the stopband conditions are met. Both 
design approaches deliver FIR filters with a linear phase characteristic.

When you use conventional techniques to design FIR filters with especially 
narrow bandwidths, the resulting filter lengths can be very long. FIR filters 
with long filter lengths often require lengthy design and implementation 
times and are more susceptible to numerical inaccuracy. In some cases, 
conventional filter design techniques, such as the Parks-McClellan 
algorithm, might fail the design altogether.

IIR Filters
IIR filters are filters that may or may not have ripple in the passband and/or 
the stopband. Digital IIR filter design derives from the classical analog 
designs. These designs are Butterworth, Chebyshev, Chebyshev II, Elliptic, 
and Bessel.

Butterworth Filters
A smooth response at all frequencies and a monotonic decrease from the 
specified cut-off frequencies characterize the frequency response of 
Butterworth filters. Butterworth filters are maximally flat, the ideal 
response of unity in the passband and zero in the stopband. The half power 
frequency or the 3 dB down frequency corresponds to the specified cut-off 
frequencies.
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Figure 4-4 shows the response of a lowpass Butterworth filter. The 
advantage of Butterworth filters is a smooth, monotonically decreasing 
frequency response. After you set the cut-off frequency, LabVIEW sets the 
steepness of the transition proportional to the filter order. Higher-order 
Butterworth filters approach the ideal lowpass filter response.

Figure 4-4.  Butterworth Filter Response

Chebyshev Filters
Butterworth filters do not always provide a good approximation of the 
ideal filter response because of the slow rolloff between the passband 
(the portion of interest in the spectrum) and the stopband (the unwanted 
portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting for 
the maximum absolute value of the difference between the ideal filter and 
the filter response you want (the maximum tolerable error in the passband). 
The frequency response characteristics of Chebyshev filters have an 
equiripple magnitude response in the passband, monotonically decreasing 
magnitude response in the stopband, and a sharper rolloff than Butterworth 
filters.

Figure 4-5 shows the response of a lowpass Chebyshev filter. Notice that 
the equiripple response in the passband is constrained by the maximum 
tolerable ripple error and that the sharp rolloff appears in the stopband. The 
advantage of Chebyshev filters over Butterworth filters is that Chebyshev 
filters have a sharper transition between the passband and the stopband with 
a lower-order filter. This produces smaller absolute errors and higher 
execution speeds.

Order = 2

Order = 5

Order = 20

Butterworth
Response
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Figure 4-5.  Chebyshev Filter Response

Chebyshev II (or Inverse Chebyshev) Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshev 
filters, are similar to Chebyshev filters, except that Chebyshev II filters 
distribute the error over the stopband (as opposed to the passband), and 
Chebyshev II filters are maximally flat in the passband (as opposed to the 
stopband).

Chebyshev II filters minimize peak error in the stopband by accounting for 
the maximum absolute value of the difference between the ideal filter and 
the filter response you want. The frequency response characteristics of 
Chebyshev II filters are equiripple magnitude response in the stopband, 
monotonically decreasing magnitude response in the passband, and a 
rolloff sharper than Butterworth filters.

Figure 4-6 plots the response of a lowpass Chebyshev II filter. Notice that 
the equiripple response in the stopband is constrained by the maximum 
tolerable error and that the smooth monotonic rolloff appears in the 
stopband. The advantage of Chebyshev II filters over Butterworth filters is 
that Chebyshev II filters give a sharper transition between the passband and 
the stopband with a lower order filter. This difference corresponds to a 
smaller absolute error and higher execution speed. One advantage of 
Chebyshev II filters over regular Chebyshev filters is that Chebyshev II 
filters distribute the error in the stopband instead of the passband.

Order = 2

Order = 3

Order = 5

Chebyshev
Response
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Figure 4-6.  Chebyshev II Filter Response

Elliptic (or Cauer) Filters
Elliptic filters minimize the peak error by distributing it over the 
passband and the stopband. Equiripples in the passband and the stopband 
characterize the magnitude response of elliptic filters. Compared with the 
same order Butterworth or Chebyshev filters, the elliptic design provides 
the sharpest transition between the passband and the stopband. For this 
reason, elliptic filters are widely used.

Figure 4-7 plots the response of a lowpass elliptic filter. Notice that the 
ripple in both the passband and stopband is constrained by the same 
maximum tolerable error (as specified by ripple amount in decibels). Also, 
notice the sharp transition edge for even low-order elliptic filters.

Order = 2

Order = 3

Order = 5

Chebyshev II
Response
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Figure 4-7.  Elliptic Filter Response

Bessel Filters
You can use Bessel filters to reduce nonlinear phase distortion inherent in 
all IIR filters. In higher order filters and those with a steeper rolloff, this 
condition is more pronounced, especially in the transition regions of the 
filters. Bessel filters have maximally flat response in both magnitude and 
phase. Furthermore, the phase response in the passband of Bessel filters, 
which is the region of interest, is nearly linear. Like Butterworth filters, 
Bessel filters require high-order filters to minimize the error and, for this 
reason, are not widely used. You also can obtain linear phase response 
using FIR filter designs.

Figure 4-8 and Figure 4-9 plot the response of a lowpass Bessel filter. 
Notice that the response is smooth at all frequencies, as well as 
monotonically decreasing in both magnitude and phase. Also, notice 
that the phase in the passband is nearly linear.

Order = 2

Order = 3

Order = 4

Elliptic
Response
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Figure 4-8.  Bessel Magnitude Filter Response

Figure 4-9.  Bessel Phase Filter Response

Choosing and Designing a Digital Filter
Some of the factors affecting the choice of a suitable filter are whether you 
require linear phase, whether you can tolerate ripples, and whether you 
require a narrow transition band. Use Figure 4-10 as a guideline for 
selecting the correct filter. Keep in mind that in practice, you may need to 
experiment with several different options before finding the best one.

Order = 2

Order = 5

Order = 10

Bessel Magnitude
Response

Order = 2

Order = 5

Order = 10

Bessel Phase
Response
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Figure 4-10.  Filter Flowchart

After you choose the type of filter, you must specify the design parameters. 
The first filter design parameter to consider is sampling rate. The maximum 
frequency component of the signal of interest usually determines the 
sampling rate. A common rule of thumb is to choose a sampling rate that is 
10 times the highest frequency component of the signal of interest. The 
possible tradeoff occurs when the cut-off frequency of the filter must be 
very close to either DC or the Nyquist frequency. At these points, a filter 
may converge more slowly. The solution is to increase the sampling rate if 
the cut-off is too close to Nyquist, or reduce the sampling rate if the cut-off 
is too close to DC. In practice, a particular sampling rate is chosen and 
adjusted only if there are problems.
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5
Smoothing Windows

This chapter discusses spectral leakage, using windows to decrease spectral 
leakage, the different types of windows, choosing the correct window type, 
and the differences between windows used for spectral analysis and 
windows used for filter coefficient design.

Applying a window to a signal is known as windowing. You can use 
windowing in the following applications:

• Defining the duration of the observation

• Reducing spectral leakage

• Separating a small amplitude signal from a larger amplitude signal 
with frequencies very close to each other

• Designing FIR filter coefficients

The Windows VIs provide a simple method of improving the spectral 
characteristics of a sampled signal. Use the NI Example Finder, available 
by selecting Help»Find Examples, to find an example of how to use the 
Windows VIs.

Spectral Leakage and Smoothing Windows
Spectral leakage is a phenomenon in which the energy at one frequency 
appears to have leaked out into all other frequencies. In practical, 
signal-sampling applications, you can obtain only a finite record of the 
signal, even when you carefully observe the sampling theorem and 
sampling conditions. Unfortunately for the discrete-time system, the finite 
sampling record results in a truncated waveform with different spectral 
characteristics from the original continuous-time signal. These 
discontinuities, shown in Figure 5-1, produce leakage of spectral 
information, resulting in a discrete-time spectrum that is a smeared version 
of the original continuous-time spectrum.
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Figure 5-1.  Periodic Waveform Created from Sampled Period

When you use the DFT/FFT to find the frequency content of a signal, the 
assumption is made that the data you have is a single period of a 
periodically repeating waveform, as shown in Figure 5-1. The first period 
shown is the one sampled. The waveform corresponding to the sampled 
period is then repeated in time to produce the periodic waveform.

Sampling an Integer Number of Cycles
Figure 5-2 shows a sine wave and its corresponding Fourier transform. The 
sampled time-domain waveform is shown in Graph 1. Because the Fourier 
transform assumes periodicity, this waveform is repeated. The periodic 
time waveform of the sine wave from Graph 1 is shown in Graph 2. 
Graph 3 shows the spectral representation of the waveform. Because the 
time record in Graph 2 is periodic, with no discontinuities, its spectrum is 
a single line showing the frequency of the sine wave. The reason the 
waveform in Graph 2 does not have any discontinuities is because an 
integer number of cycles, in this case, 1, of the time waveform have been 
sampled.

Time

One Period Discontinuity
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Figure 5-2.  Sine Wave and Corresponding Fourier Transform

Sampling a Noninteger Number of Cycles
Because of the assumption of periodicity of the waveform, artificial 
discontinuities between successive periods occur when you sample a 
noninteger number of cycles. The artificial discontinuities appear as very 
high frequencies in the spectrum of the signal, frequencies that were not 
present in the original signal. These high frequencies could be much higher 
than the Nyquist frequency and, as you have seen before, are aliased 
somewhere between 0 and fs/2. Therefore, the spectrum you get by using 
the DFT/FFT is not the actual spectrum of the original signal but is a 
smeared version. In the smeared version of the spectrum, the energy at one 
frequency appears to have leaked out into all the other frequencies. This 
phenomenon is known as spectral leakage.

Figure 5-3 shows the spectral representation when a noninteger number of 
cycles of the time waveform is sampled. Graph 1 consists of 1.25 cycles of 
the sine wave. When the sampled waveform is repeated periodically, the 
resulting waveform, as shown in Graph 2, consists of discontinuities. 
Graph 3 shows the spectral representation of the waveform. Notice how 
the energy is now spread, or smeared, over a wide range of frequencies. 
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The energy has leaked out of one of the FFT lines and smeared itself into 
all the other lines causing spectral leakage.

 

Figure 5-3.  Spectral Representation When Sampling a Nonintegral 
Number of Samples

Leakage exists because of the finite time record of the input signal. 
To overcome leakage, one solution is to take an infinite time record, 
from –infinity to +infinity. With an infinite time record, the FFT would 
calculate one single line at the correct frequency. However, waiting for 
infinite time is not possible in practice. To overcome the limitations of a 
finite time record, windowing is used to reduce the spectral leakage.

Using Windows to Prevent Spectral Leakage
A simple way to improve the spectral characteristics of a sampled signal 
is to apply smoothing windows. When performing Fourier or spectral 
analysis on finite-length data, you can use windows to minimize the 
transition edges of your truncated waveforms, thus reducing spectral 
leakage. When used in this manner, smoothing windows act like 
predefined, narrowband, lowpass filters.
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The amount of spectral leakage depends on the amplitude of the 
discontinuity. The larger the discontinuity, the more the leakage, and 
vice versa. You can use windowing to reduce the amplitude of the 
discontinuities at the boundaries of each period. Windowing consists of 
multiplying the time record by a finite length window whose amplitude 
varies smoothly and gradually towards zero at the edges, as shown in 
Figure 5-4. In Figure 5-4, the original time signal is windowed using a 
Hamming window. Notice that the time waveform of the windowed signal 
gradually tapers to zero at the ends. Therefore, when performing Fourier or 
spectral analysis on finite-length data, you can use windows to minimize 
the transition edges of your sampled waveform. A smoothing window 
function applied to the data before it is transformed into the frequency 
domain minimizes spectral leakage.

 

Figure 5-4.  Time Signal Windowed Using a Hamming Window

Notice that if the time record contains an integral number of cycles, as 
shown in Figure 5-2, then the assumption of periodicity does not result in 
any discontinuities, and thus there is no spectral leakage. The problem 
arises only when you have a nonintegral number of cycles.
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Characteristics of Different Types of Window Functions
This section discusses the different types of windows available in 
LabVIEW. Depending on your application, you might find a particular 
window type more useful than the others.

Windowing a signal in the time domain is equivalent to multiplying the 
signal by the window function. Multiplication in the time domain is 
equivalent to convolution in the frequency domain. Therefore, the spectrum 
of the windowed signal is a convolution of the spectrum of the original 
signal with the spectrum of the window. Thus, windowing changes the 
shape of the signal in the time domain, as well as affecting the spectrum 
that you see. The length, or time interval, of a window is defined in terms 
of the number of samples.

Rectangular (None)
The rectangular window has a value of one over its length. The following 
equation defines the rectangular window.

w(n) = 1.0 for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

Applying a rectangular window is equivalent to not using any window 
because the rectangular function just truncates the signal to within a finite 
time interval. The rectangular window has the highest amount of spectral 
leakage.

The rectangular window for N = 32 is shown in Figure 5-5.
 

Figure 5-5.  Rectangular Window

The rectangular window is useful for analyzing transients that have a 
duration shorter than that of the window. The rectangular window is also 
used in order tracking, where the effective sampling rate is proportional to 
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the speed of the shaft in rotating machines. In order tracking, the 
rectangular window detects the main mode of vibration of the machine and 
its harmonics.

Hanning
The Hanning window has a shape similar to that of half a cycle of a cosine 
wave. The following equation defines the Hanning window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

A Hanning window with N = 32 is shown in Figure 5-6.

Figure 5-6.  Hanning Window

The Hanning window is useful for analyzing transients longer than the time 
duration of the window and for general purpose applications.

Hamming
The Hamming window is a modified version of the Hanning window. 
The shape of the Hamming window is similar to that of a cosine wave. The 
following equation defines the Hamming window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

A Hamming window with N = 32 is shown in Figure 5-7.

w n( ) 0.5 0.5 2πn
N

----------cos–=

w n( ) 0.54 0.46 2πn
N

----------cos–=
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Figure 5-7.  Hamming Window

The Hanning and Hamming windows are somewhat similar, as shown in 
Figures 5-6 and 5-7. However, notice that in the time domain, the 
Hamming window does not get as close to zero near the edges as does the 
Hanning window.

Kaiser-Bessel
The Kaiser-Bessel window is a flexible window whose shape you can 
modify by adjusting the parameter beta. Thus, depending on your 
application, you can change the shape of the window to control the amount 
of spectral leakage. Figure 5-8 shows the Kaiser-Bessel window for 
different values of beta.
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Figure 5-8.  Kaiser-Bessel Window

Notice that for small values of beta, the shape is close to that of a 
rectangular window. Actually, for beta = 0.0, you do get a rectangular 
window. As you increase beta, the window tapers off more to the sides.

The Kaiser-Bessel window is good for detecting two signals of almost the 
same frequency but with significantly different amplitudes.

Triangle
The shape of the triangle window is that of a triangle. The following 
equation defines the triangle window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

A triangle window for N = 32 is shown in Figure 5-9.

w n( ) 1 2n N–
N

----------------–=
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Figure 5-9.  Triangle Window

Flat Top
The flat top window has the best amplitude accuracy of all the window 
functions at ±0.02 dB for signals exactly between integral cycles. 
However, the increased amplitude accuracy comes at the expense of 
frequency selectivity. The following equation defines the flat top window.

where

a0 = 0.215578948
a1 = 0.416631580
a2 = 0.277263158
a3 = 0.083578947
a4 = 0.006947368

A flat top window is shown in Figure 5-10.

w n( ) 1–( )k

k 0=

4

∑ ak kω( )cos=

ω 2πn
N

----------=
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Figure 5-10.  Flat Top Window

The flat top window is most useful in accurately measuring the amplitude 
of single frequency components with little nearby spectral energy in the 
signal. 

Exponential
The shape of the exponential window is that of a decaying exponential. 
The following equation defines the exponential window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window, w is the window value, and f is the final 
value.

The initial value of the window is one and gradually decays toward zero. 
You can adjust the final value of the exponential window to between 
0 and 1.

The exponential window for N = 32, with the final value specified as 0.1, is 
shown in Figure 5-11.

 

Figure 5-11.  Exponential Window

w n[ ] e
n f( )ln
N 1–
--------------- 
 

f
n

N 1–
------------- 
 

= =
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The exponential window is useful in analyzing transients whose duration is 
longer than the length of the window. Transients are signals that exist only 
for a short time duration. You can apply the exponential window to signals 
that decay exponentially, such as the response of structures with light 
damping that are excited by an impact, for example, a hammer.

Windows for Spectral Analysis versus Windows 
for Coefficient Design

Spectral Analysis and filter coefficient design place different requirements 
on a window. Spectral analysis requires a DFT-even window, while filter 
coefficient design requires a window symmetric about its midpoint. This 
section discusses the differences between windows for spectral analysis 
and windows for filter coefficient design.

Spectral Analysis
The Windows VIs in LabVIEW are designed for spectral analysis 
applications. In spectral analysis applications, the input signal is windowed 
by passing it through one of the Windows VIs. The windowed signal is then 
passed to a DFT-based VI for frequency-domain display and analysis.

The window functions designed for spectral analysis must be DFT-even, 
a term defined by Fredric J. Harris in his paper On the Use of Windows 
for Harmonic Analysis with the Discrete Fourier Transform (Proceedings 
of the IEEE, Volume 66, No. 1, January 1978). A window function is 
DFT-even if its dot product, or inner product, with integral cycles of sine 
sequences is identically zero. Another way to think of a DFT-even sequence 
is that its DFT has no imaginary component.
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Figures 5-12 and 5-13 illustrate the Hanning window and one cycle of a 
sine pattern for a sample size of 8.

 

Figure 5-12.  Hanning Window for Sample Size 8
 

Figure 5-13.  Sine Pattern for Sample Size 8

You can see that the DFT-even Hanning window is not symmetric about its 
midpoint and its last point is not equal to its first point, much like one 
complete cycle of a sine pattern.

The DFT considers input sequences to be periodic. In other words, the 
signal being analyzed is actually a concatenation of the input signal. 
Figure 5-14 shows three cycles of the sequences from Figures 5-12 
and 5-13, demonstrating the smooth periodic extension of the DFT-even 
window and the single-cycle sine pattern.
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Figure 5-14.  Periodic Extension

Windows for Coefficient Design
FIR filter design requires windows that are symmetric about their midpoint. 
Refer to Chapter 4, Digital Filtering, for more information about filtering.

The following equations of the Hanning window function illustrate the 
difference between the DFT-even window function for spectral analysis 
and the symmetrical window function for coefficient design.

The Hanning window function for spectral analysis is given by the 
following equation.

where N is the length of the window and w is the window value.

The Hanning window function for symmetrical coefficient design is given 
by the following equation.

where N is the length of the window and w is the window value.

The preceding two equations show that you can implement the symmetrical 
window functions by slightly modifying the use of the DFT-even window 
functions.

w i[ ] 0.5 1 2πi
N 

 

cos–

= for i 0, 1, 2, … , N 1–=

w i[ ] 0.5 1 2πi
N 1– 
 


cos–

= for i 0, 1, 2, … , N 1–=



Chapter 5 Smoothing Windows

© National Instruments Corporation 5-15 LabVIEW Analysis Concepts

Choosing the Correct Window Type
The type of window you should use depends on the type of signal you have 
and what you are looking for. Choosing the correct window requires some 
prior knowledge of the signal you are analyzing. Table 5-1 shows the 
different types of signals and the appropriate windows that you can use 
with them.

In many cases, you may not have sufficient prior knowledge of the signal, 
so you need to experiment with different windows to find the best one.

Table 5-1.  Signals and Windows

Type of Signal Window

Transients whose duration is shorter than the length of the 
window

Rectangular

Transients whose duration is longer than the length of the 
window

Exponential, Hanning

General-purpose applications Hanning

Spectral analysis (frequency response measurements) Hanning (for random excitation), 
Rectangular (for pseudorandom 
excitation)

Separation of two tones with frequencies very close to each 
other but with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close to each 
other, but with almost equal amplitudes

Rectangular

Accurate single tone amplitude measurements Flat top
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6
DC/RMS Measurements

Two of the most common measurements of a signal are its direct current 
(DC) and root mean square (RMS) levels. This chapter introduces 
measurement analysis techniques for making DC and RMS measurements 
of a signal.

What Is the DC Level of a Signal?
You can use DC measurements to define the value of a static or slowly 
varying signal. DC measurements can be both positive and negative. The 
DC value usually is constant within a specific time window. You can track 
and plot slowly moving values, such as temperature, as a function of time 
using a DC meter. In that case, the observation time that results in the 
measured value has to be short compared to the speed of change for the 
signal. Figure 6-1 illustrates an example DC level of a signal.

Figure 6-1.  DC Level of a Signal

The DC level of a continuous signal V(t) from time t1 to time t2 is given by 
the equation:

where t2 – t1 represents the integration time or measurement time.

t1 t2
Time

V
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ta
ge

Vdc

Vdc
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t2 t1–( )
-------------------- V t( ) td
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∫⋅=



Chapter 6 DC/RMS Measurements

LabVIEW Analysis Concepts 6-2 ni.com

For digitized signals, the discrete-time version of the previous equation is 
given by:

For a sampled system, the DC value is defined as the mean value of the 
samples acquired in the specified measurement time window.

Between pure DC signals and fast-moving dynamic signals is a “gray zone” 
where signals become more complex, and measuring the DC level of these 
signals becomes quite challenging.

Real world signals often contain a significant amount of dynamic influence. 
Often, you do not want the dynamic part of the signal. The DC 
measurement identifies the static DC signal hidden in the dynamic signal, 
for example, the voltage generated by a thermocouple in an industrial 
environment, where external noise or hum from the main power can disturb 
the DC signal significantly.

What Is the RMS Level of a Signal?
The RMS level of a signal is the square root of the mean value of the 
squared signal. RMS measurements are always positive. Use RMS 
measurements when a representation of energy is needed. You usually 
acquire RMS measurements on dynamic signals (signals with relatively 
fast changes) like noise or periodic signals. Refer to the LabVIEW 
Measurements Manual for more information about when to use RMS 
measurements.

The RMS level of a continuous signal V(t) from time t1 to time t2 is given 
by the equation:

where t2 – t1 represents the integration time or measurement time.

Vdc
1
N
---- Vi

i 1=

N

∑⋅=

Vrms
1

t2 t1–( )
-------------------- V2 t( ) td

t1

t2

∫⋅=
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The RMS level of a discrete signal Vi is given by the equation:

One difficulty is encountered when measuring the dynamic part of a signal 
using an instrument that does not offer an AC-coupling option. A true RMS 
measurement includes the DC part in the measurement, a measurement you 
might not want.

Averaging to Improve the Measurement
Instantaneous DC measurements of a noisy signal can vary randomly and 
significantly, as shown in Figure 6-2. You can measure a more accurate 
value by averaging out the noise that is superimposed on the desired DC 
level. In a continuous signal, the averaged value between two times, t1 and 
t2, is defined as the signal integration between t1 and t2, divided by the 
measurement time, t2 – t1, as shown in Figure 6-1. The area between the 
averaged value Vdc and the signal that is above Vdc is equal to the area 
between Vdc and the signal that is under Vdc. For a sampled signal, the 
average value is the sum of the voltage samples divided by the 
measurement time in samples, or the mean value of the measurement 
samples. Refer to the LabVIEW Measurements Manual for more 
information about averaging in LabVIEW.

Figure 6-2.  Instantaneous DC Measurements
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An RMS measurement is an averaged quantity, because it is the average 
energy in the signal over a measurement period. You can improve the RMS 
measurement accuracy by using a longer averaging time, equivalent to the 
integration time or measurement time.

There are several different strategies to use for making DC and RMS 
measurements, each dependent on the type of error or noise sources. 
When choosing a strategy, you must decide if accuracy or speed of the 
measurement is more important.

Common Error Sources Affecting DC 
and RMS Measurements

Some common error sources for DC measurements are single frequency 
components (or tones), multiple tones, or random noise. These same error 
signals can interfere with RMS measurements, so in many cases the 
approach taken to improve RMS measurements is the same as for 
DC measurements.

DC Overlapped with Single Tone
Consider the case where the signal you measure is composed of a DC signal 
and a single sine tone. The average of a single period of the sine tone is 
ideally zero, because the positive half-period of the tone cancels the 
negative half-period.

Figure 6-3.  DC Signal Overlapped with Single Tone

Any remaining partial period, shown in Figure 6-3 with vertical hatching, 
introduces an error in the average value and, therefore, in the DC 
measurement. Increasing the averaging time reduces this error, because the 
integration is always divided by the measurement time t2 – t1. If you know 
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the period of the sine tone, you can take a more accurate measurement of 
the DC value by using a measurement period equal to an integer number of 
periods of the sine tone. The most severe error occurs when the 
measurement time is a half-period different from an integer number of 
periods of the sine tone, because this is the maximum area under or over the 
signal curve.

Defining the Equivalent Number of Digits
Defining the Equivalent Number of Digits (ENOD) makes it easier to relate 
a measurement error to a number of digits, similar to digits of precision. 
ENOD translates measurement accuracy into a number of digits.

ENOD = log10(Relative Error)

A 1 percent error corresponds to 2 digits of accuracy, and a 1 part per 
million error corresponds to 6 digits of accuracy (log10(0.000001) = 6).

ENOD is only an approximation that tells you what order of magnitude of 
accuracy you can achieve under specific measurement conditions. 
This accuracy does not take into account any error introduced by the 
measurement instrument or data acquisition hardware itself. ENOD only 
gives you a tool for computing the reliability of a specific measurement 
technique.

Thus, the ENOD should at least match the accuracy of the measurement 
instrument or measurement requirements. For example, it is not necessary 
to use a measurement technique with an ENOD of 6 digits if your 
instrument has an accuracy of only 0.1 percent (3 digits). Similarly, you do 
not get the six digits of accuracy from your 6-digit accurate measurement 
instrument if your measurement technique is limited to an ENOD of only 
3 digits.

DC Plus Sine Tone
Figure 6-4 shows that for a 1.0 VDC signal overlapped with a 0.5 V single 
sine tone, the worst ENOD increases with measurement time, x-axis shown 
in periods of the additive sine tone, at a rate of approximately 1 additional 
digit for 10 times more measurement time. To achieve 10 times more 
accuracy, you need to increase your measurement time by a factor of 10. 
In other words, accuracy and measurement time are related through a 
first-order function.
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Figure 6-4.  Digits versus Measurement Time for 1 VDC Signal with 0.5 Single Tone

Windowing to Improve DC Measurements
The worst ENOD for a DC signal plus a sine tone occurs when the 
measurement time is at half-periods of the sine tone. You can greatly 
reduce these errors due to non-integer number of cycles by using a 
weighting function before integrating to measure the desired DC value. 
The most common weighting or window function is the Hann window, 
commonly known as the Hanning window.

Figure 6-5 shows a dramatic increase in accuracy from the use of the Hann, 
also known as Hanning, window. The accuracy as a function of the number 
of sine tone periods is improved from a first-order function to a third-order 
function. In other words, you can achieve 1 additional digit of accuracy for 
every 101/3 = 2.15 times more measurement time using the Hann window 
instead of 1 digit for every 10 times more measurement time without using 
a window. As in the non-windowing case, the DC level is 1.0 V and the 
single tone peak amplitude is 0.5 V.
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Figure 6-5.  Digits versus Measurement Time for DC + Tone Using Hann Window

You can use other types of window functions to further reduce the 
necessary measurement time or greatly increase the resulting accuracy. 
Figure 6-6 shows that the Low Sidelobe (LSL) window can achieve more 
than six ENOD of worst accuracy when averaging your DC signal over only 
five periods of the sine tone (same test signal).

Figure 6-6.  Digits versus Measurement Time for DC + Tone Using LSL Window
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RMS Measurements Using Windows
Like DC measurements, the worst ENOD for measuring the RMS level of 
signals sometimes can be significantly improved by applying a window 
to the signal before RMS integration. For example, if you measure the 
RMS level of the DC signal plus a single sine tone, the most accurate 
measurements are made when the measurement time is an integer number 
of periods of the sine tone. Figure 6-7 shows that the worst ENOD varies 
with measurement time (in periods of the sine tone) for various window 
functions. Here, the test signal contains 0.707 VDC with 1.0 V peak sine 
tone.

Figure 6-7.  Digits versus Measurement Time for RMS Measurements

Applying the window to the signal increases RMS measurement accuracy 
significantly, but the improvement is not as large as in DC measurements. 
For this example, the LSL window achieves six digits of accuracy when the 
measurement time reaches eight periods of the sine tone.

Using Windows with Care
Window functions can be very useful to improve the speed of your 
measurement, but you must be careful. The Hann window is a general 
window recommended in most cases. Use more advanced windows like the 
LSL window only if you know enough about your signal that you are sure 
the window is not doing more damage than good. For example, you can 
significantly reduce RMS measurement accuracy if the signal you want to 
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measure is composed of many frequency components close to each other in 
the frequency domain.

You also must make sure that the window is scaled correctly or that you 
update scaling after applying the window. The most useful window 
functions are pre-scaled by their coherent gain—the mean value of the 
window function—so that the resulting mean value of the scaled window 
function is always 1.00. DC measurements do not need to be scaled when 
using a properly scaled window function. For RMS measurements, each 
window has a specific equivalent noise bandwidth that you must use to 
scale integrated RMS measurements. You must scale RMS measurements 
using windows by the reciprocal of the square root of the equivalent noise 
bandwidth.

Rules for Improving DC and RMS Measurements
Use the following guidelines when determining a strategy for improving 
your DC and RMS measurements:

• If your signal is overlapped with a single tone, longer integration times 
increase the accuracy of your measurement. If you know the exact 
frequency of the sine tone, use a measurement time that corresponds to 
an exact number of sine periods. If you do not know the frequency of 
the sine tone, apply a window, such as a Hann window, to significantly 
reduce the measurement time needed to achieve a specific accuracy.

• If your signal is overlapped with many independent tones, increasing 
measurement time increases the accuracy of the measurement. As in 
the single tone case, using a window significantly reduces the 
measurement time needed to achieve a specific accuracy.

• If your signal is overlapped with noise, do not use a window. In this 
case, you can increase the accuracy of your measurement by increasing 
the integration time or by pre-processing or conditioning your noisy 
signal with a lowpass (or bandstop) filter.

RMS Levels of Specific Tones
You can always improve the accuracy of an RMS measurement by 
choosing a specific measurement time (to contain an integer number of 
cycles of your sine tones) or by using a window function. The measurement 
of the RMS value is based only on the time domain knowledge of your 
signal. You can use advanced techniques when you are interested in a 
specific frequency or narrow frequency range.
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You can use bandpass or bandstop filtering before RMS computations to 
measure the RMS power in a specific band of frequencies. You also can use 
the Fast Fourier Transform (FFT) to pick out specific frequencies for RMS 
processing. Refer to Chapter 2, Frequency Analysis, for more information 
about the FFT.

The RMS level of a specific sine tone that is part of a complex or noisy 
signal can be extracted very accurately using frequency domain processing, 
leveraging the power of the FFT, and utilizing the benefits of windowing.
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7
Distortion Measurements

This chapter defines harmonic distortion, THD, and SINAD, and explains 
when to use distortion measurements.

What Is Distortion?
When a pure single-frequency sine wave is applied to a perfectly linear 
system, it produces an output that has the same frequency as that of the 
input sine wave, but with possible changes in the amplitude and/or phase. 
This also is true when a composite signal consisting of several sine waves 
is applied at the input. The output signal consists of the same frequencies 
but with different amplitudes and/or phases.

Many real-world systems act as nonlinear systems when their input limits 
are exceeded, resulting in distorted output signals. If the input limits of a 
system are exceeded, the output consists of one or more frequencies that did 
not originally exist at the input. For example, if the input to a nonlinear 
system consists of two frequencies f1 and f2, the frequencies at the output 
could be f1 and harmonics (integer multiples) of f1, f2 and harmonics of f2, 
and sums and differences of f1, f2, and the harmonics of f1 and f2. The 
number of new frequencies at the output, their corresponding amplitudes, 
and their relationships with respect to the original frequencies vary 
depending on the transfer function. Use distortion measurements to 
quantify the degree of nonlinearity of a system. Some common distortion 
measurements include Total Harmonic Distortion (THD), Total Harmonic 
Distortion + Noise (THD + N), Signal Noise and Distortion (SINAD), and 
Intermodulation Distortion.

Application Areas
You can make distortion measurements for many devices, such as A/D 
and D/A converters, audio processing devices, such as preamplifiers, 
equalizers, and power amplifiers, analog tape recorders, cellular phones, 
radios, TVs, stereos, and loudspeakers.

Measurements of harmonics often provide a good indication of the cause of 
the nonlinearity. For example, nonlinearities that are not symmetrical 
around zero produce mainly even harmonics, whereas symmetrical 



Chapter 7 Distortion Measurements

LabVIEW Analysis Concepts 7-2 ni.com

nonlinearities result in the production of mainly odd harmonics. You can 
use distortion measurements to diagnose faults such as bad solder joints, 
torn speaker cones, and components that have been incorrectly installed. 
Nonlinearities are not always undesirable, however. For example, many 
musical sounds are produced specifically by driving a device into its 
nonlinear region.

Harmonic Distortion
When a signal, x(t), of a particular frequency (for example, f1) is passed 
through a nonlinear system, the output of the system consists of not only 
the input frequency (f1), but also its harmonics (f2 = 2f1, f3 = 3f1, f4 = 4f1, and 
so on). The number of harmonics, and their corresponding amplitudes, that 
are generated depends on the degree of nonlinearity of the system. In 
general, the more the nonlinearity, the higher the harmonics, and vice 
versa.

An example of a nonlinear system is a system where the output y(t) is the 
cube of the input signal x(t), as shown in Figure 7-1.

Figure 7-1.  Example Nonlinear System

So, if the input is

the output is 

Therefore, the output contains not only the input fundamental frequency of 
ω, but also the third harmonic of 3ω.

Total Harmonic Distortion
To determine the amount of nonlinear distortion that a system introduces, 
you need to measure the amplitudes of the harmonics that were introduced 
by the system relative to the amplitude of the fundamental. Harmonic 
distortion is a relative measure of the amplitudes of the harmonics as 
compared to the amplitude of the fundamental. If the amplitude of the 

x t( ) ωt( )cos=
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fundamental is A1 and the amplitudes of the harmonics are A2 (second 
harmonic), A3 (third harmonic), A4 (fourth harmonic), and so on, then the 
total harmonic distortion (THD) is given by

The percentage total harmonic distortion (%THD) is given by the equation:

Thus, measurement of the total harmonic distortion requires measuring the 
amplitudes of the fundamental frequency and the amplitudes of the 
individual harmonics. A common cause of harmonic distortion is clipping 
that occurs when a system is driven beyond its capabilities. Symmetrical 
clipping results in odd harmonics, but asymmetrical clipping creates both 
even and odd harmonics.

Real-world signals are usually noisy. The system also can introduce 
additional noise into the signal. A useful measure of distortion, which also 
takes into account the amount of noise power, is total harmonic 
distortion + noise (THD + N) and is given by the equation:

where N is the noise power. 

The percentage total harmonic distortion + noise (%THD + N) is given by 
the equation:

Thus, measurement of THD + N requires measuring the amplitude of the 
fundamental frequency and the power present in the remaining signal after 
the fundamental frequency has been removed.
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THD + N also includes the noise, a low measurement not only means that 
the system has a low amount of harmonic distortion, it also means that the 
contribution from the AC mains hum, wideband white noise, and other 
interfering signals is low. Measurements of THD or THD + N are usually 
specified in terms of the highest order harmonic that has been present in 
the measurement, for example, THD through the seventh harmonic or 
THD + N through the third harmonic.

SINAD
Another measurement that takes into account both harmonics and noise is 
SINAD. SINAD is given by the equation:

SINAD is the reciprocal of THD + N. You can use SINAD to characterize 
the performance of FM receivers in terms of sensitivity, adjacent channel 
selectivity, and alternate channel selectivity.

SINAD Fundamental Noise Distortion+ +
Noise Distortion+

------------------------------------------------------------------------------------------=
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8
Limit Testing

You can use limit testing to monitor a waveform and determine if it always 
satisfies a set of conditions, usually upper and lower limits. The region 
bounded by the specified limits is a mask. The result of a limit or mask test 
is generally a pass or fail.

Setting Up an Automated Test System
You can use the same method to create and control many different 
automated test systems. Complete the following basic steps to set up an 
automated test system for limit mask testing.

1. Configure the measurement by specifying arbitrary upper and lower 
limits. This defines your mask or region of interest.

2. Acquire data using a DAQ device.

3. Monitor the data to make sure it always falls within the specified mask.

4. Log the Pass/Fail results from step 3 to a file or visually inspect the 
input data and the points that fall outside the mask.

Repeat steps 2 through 4 to continue limit mask testing.

The following sections examine steps 1 and 3 in further detail. Assume that 
the signal to be monitored starts at x = x0 and all the data points are evenly 
spaced. The spacing between each point is denoted by dx.

Specifying a Limit
Limits are classified into two types: continuous limits and segmented 
limits, as shown in Figure 8-1. The top graph in Figure 8-1 shows a 
continuous limit. A continuous limit is specified using a set of x and y 
points {{x1, x2, x3, …}, {y1, y2, y3, …}}. Completing step 1 creates a limit 
with the first point at x0 and all other points at a uniform spacing of dx (x0 + 
dx, x0 + 2dx, …). This is done through a linear interpolation of the x and y 
values that define the limit. In Figure 8-1, black dots represent the points at 
which the limit is defined and the solid line represents the limit you create. 
Creating the limit in step 1 reduces test times in step 3. If the spacing 
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between the samples changes, you can repeat step 1. Notice that the limit is 
undefined in the region x0 < x < x1 and for x > x4.

Figure 8-1.  Continuous versus Segmented Limit Specification

The bottom graph of Figure 8-1 shows a segmented limit. The first segment 
is defined using a set of x and y points {{x1, x2}, {y1, y2}}. The second 
segment is defined using a set of points {x3, x4, x5} and {y3, y4, y5}. You can 
define any number of such segments. As with continuous limits, step 1 uses 
linear interpolation to create a limit with the first point at x0 and all other 
points with an uniform spacing of dx. Notice that the limit is undefined in 
the region x0 < x < x1 and in the region x > x5. Also notice the limit is 
undefined in the region x2 < x < x3.
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Specifying a Limit Using a Formula
You can specify limits using formulas. Such limits are best classified as 
segmented limits. Each segment is defined by start and end frequencies and 
a formula. For example, the ANSI T1-413 recommendation specifies the 
limits for the transmit and receive spectrum of an ADSL signal in terms of 
formula. Table 8-1, which only includes a part of the specification, shows 
the start and end frequencies and the upper limits of the spectrum for each 
segment.

The limit is specified as an array of a set of x and y points, 
[{0.3, 4.0}{–97.5, –97.5}, {4.0, 25.9}{–92.5 + 21.5 log2(f/4000), 
{–92.5 + 21.5 log2(f/4000)}, …, {307.0, 1221.0}{–90, –90}]. Each 
element of the array corresponds to a segment.

Figure 8-2 shows the segmented limit specified using formula as shown in 
Table 8-1. The x-axis is on a logarithmic scale.

Figure 8-2.  Segmented Limit Specified Using Formula

Table 8-1.  ADSL Signal Recommendations

Start kHz End kHz
Maximum (Upper Limit) 

Value (dBm/Hz)

0.3 4.0 –97.5

4.0 25.9 –92.5 + 21.5 log2(f/4,000)

25.9 138.0 –34.5

138.0 307.0 –34.5 – 48.0 log2(f/138,000)

307.0 1221.0 –90
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Limit Testing
After you define your mask, you acquire a signal using a DAQ device. The 
sample rate is set at 1/dx S/s. Compare the signal with the limit. In step 1, 
you create a limit value at each point where the signal is defined. In step 3, 
you compare the signal with the limit. For the upper limit, if the data point 
is less than or equal to the limit point, the test passes. If the data point is 
greater than the limit point, the test fails. For the lower limit, if the data 
point is greater than or equal to the limit point, the test passes. If the data 
point is smaller than the limit point, the test fails.

Figure 8-3 shows the result of limit testing in a continuous mask case. Here, 
the test signal falls within the mask at all the points it is sampled, other than 
points b and c. Thus the limit test fails. Point d is not tested because it falls 
outside the mask.

Figure 8-3.  Result of Limit Testing with a Continuous Mask

Figure 8-4 shows the result of limit testing in a segmented mask case. Here, 
all the points fall within the mask. Points b and c are not tested because the 
mask is undefined at those points. Thus the limit test passes. Point d is not 
tested because it falls outside the mask.
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Figure 8-4.  Result of Limit Testing with a Segmented Mask

Applications
You can use limit mask testing in a wide range of test and measurement 
applications. For example, you can use limit mask testing to determine that 
the power spectral density of ADSL signals meets the recommendations 
laid out in the ANSI T1-413 specification. Refer to the Specifying a Limit 
Using a Formula section of this chapter for more information about ADSL 
signal limits.

The following sections provide examples of when you can use limit mask 
testing. In all these examples, the specifications are recommended by 
standards-generating bodies, such as the CCITT, ITU-T, ANSI, and IEC, 
to ensure that all the test and measurement systems conform to a 
universally accepted standard. In some other cases, the limit testing 
specifications are proprietary and are strictly enforced by companies for 
quality control.
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Modem Manufacturing Example
Limit testing is used in modem manufacturing to make sure the transmit 
spectrum of the line signal meets the V.34 modem specification as shown 
in Figure 8-5. 

Figure 8-5.  Upper and Lower Limit for V.34 Modem Transmitted Spectrum

The ITU-T V.34 recommendation contains specifications for a modem 
operating at data signaling rates up to 33,600 bits/s. It specifies that the 
spectrum for the line signal that transmits data conforms to the template 
shown in Figure 8-5. For example, for a normalized frequency of 1.0, the 
spectrum must always lie between 3 and 1 dB. All the modems must meet 
this specification. A modem manufacturer can set up an automated test 
system to monitor the transmit spectrum for the signals that the modem 
outputs. If the spectrum conforms to the specification, the modem passes 
the test and is ready for customer use. Recommendations such as the 
ITU-T V.34 are essential to ensure interoperability between modems from 
different manufacturers and to provide high-quality service to customers.
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Digital Filter Design Example
You also can use limit mask testing in the area of digital filter design. You 
may want to design lowpass filters with a passband ripple of 10 dB and 
stopband attenuation of 60 dB. You can use limit testing to make sure the 
frequency response of the filter always meets these specifications. The first 
step in this process is to specify the limits. You can specify a lower limit of 
–10 dB in the passband region and an upper limit of –60 dB in the stopband 
region, as shown in Figure 8-6. After you specify these limits, you can run 
the actual test repeatedly to make sure that all the frequency responses of 
all the filters are designed meet these specifications.

Figure 8-6.  Limit Test of a Lowpass Filter Frequency Response
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Pulse Mask Testing Example
The ITU-T G.703 recommendation specifies the pulse mask for signals 
with bit rates, n × 64, where n is between 2 and 31. Figure 8-7 shows the 
pulse mask for interface at 1,544 kbits/s. Signals with this bit rate are also 
referred to as T1 signals. T1 signals must lie in the mask specified by the 
upper and lower limit. These limits are set to properly enable the 
interconnection of digital network components to form a digital path or 
connection.

Figure 8-7.  Pulse Mask Testing on T1/E1 Signals
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9
Curve Fitting

This chapter describes how to extract information from a data set to obtain 
a functional description. Use the NI Example Finder, available by selecting 
Help»Find Examples, to find examples of how to use the regression VIs, 
available on the Curve Fitting palette.

Introduction to Curve Fitting
Curve fitting analysis is a technique for extracting a set of curve parameters 
or coefficients from the data set to obtain a functional description of the 
data set. The algorithm that fits a curve to a particular data set is known as 
the Least Squares Method and is discussed in most introductory textbooks 
in probability and statistics. The error is defined as

e(a) = [f(x,a) – y(x)]2 (9-1)

where e(a) is the error, y(x) is the observed data set, f(x,a) is the functional 
description of the data set, and a is the set of curve coefficients which best 
describes the curve.

For example, let a = {a0, a1}. Then the functional description of a line is

f(x,a) = a0 + a1 x

The least squares algorithm finds a by solving the system

(9-2)

To solve this system, you set up and solve the Jacobian system generated 
by expanding Equation 9-2. After you solve the system for a, you can 
obtain an estimate of the observed data set for any value of x using the 
functional description f(x, a).

In LabVIEW, the curve fitting VIs automatically set up and solve the 
Jacobian system and return the set of coefficients that best describes your 
data set. You can concentrate on the functional description of your data and 
not worry about solving the system in Equation 9-2.

∂
∂a
------e a( ) 0=
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Two input sequences, Y Values and X Values, represent the data set y(x). 
A sample or point in the data set is

(xi, yi)

where xi is the ith element of the sequence X Values, and yi is the ith element 
of the sequence Y Values.

In general, for each predefined type of curve fit, there are two types of VIs, 
unless otherwise specified. One type returns only the coefficients, so that 
you can further manipulate the data. The other type returns the coefficients, 
the corresponding expected or fitted curve, and the mean squared error 
(MSE). Because it is a discrete system, the VI calculates the MSE, which 
is a relative measure of the residuals between the expected curve values and 
the actual observed values, using the formula

(9-3)

where f is the sequence representing the fitted values, y is the sequence 
representing the observed values, and n is the number of sample points 
observed.

The Curve Fitting palette offers both linear and nonlinear curve fitting 
algorithms. You can choose from the following types of curve fitting in 
LabVIEW:

• Linear Fit—fits experimental data to a straight line of the form 
y = mx + b

y[i]=a0 + a1x[i]

• Exponential Fit—fits data to an exponential curve of the form 
y = ab

• General Polynomial Fit—fits data to a polynomial function of 
the form 

y = a + bx + cx^2 + …
y[i] = a0 + a1x[i]+a2x[i]2…

MSE 1
n
--- fi yi–( )2

i 0=

n 1–

∑=

y i[ ] a0
a1x i[ ]

=
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• General Linear Fit—fits data to 

y[i] = a0 + a1f1(x[i]) + a2f2(x[i]) + …

where y[i] is a linear combination of the parameters a0, a1, a2.... The 
general linear fit also features selectable algorithms for better precision 
and accuracy. For example, y = a0 + a1sin(x) is a linear fit because y has 
a linear relationship with parameters a0 and a1. Polynomial fits are 
always linear fits for the same reason. But special algorithms can be 
designed for the polynomial fit to speed up the fitting processing and 
improve accuracy.

• Nonlinear Levenberg-Marquardt Fit—fits data to 

y[i] = f(x[i], a0, a1, a2...)

where a0, a1, a2... are the parameters. This method is the most general 
method and does not require y to have a linear relationship with a0, a1, 
a2.... It can be used to fit linear or nonlinear curves, but is almost 
always used to fit a nonlinear curve, because the general linear fit 
method is better suited to linear curve fitting. The 
Levenberg-Marquardt method does not always guarantee a correct 
result, so it is absolutely necessary to verify the results.

Applications of Curve Fitting
The practical applications of curve fitting are numerous and include the 
following applications: 

• Removal of measurement noise.

• Filling in missing data points (for example, if one or more 
measurements were missed or improperly recorded).

• Interpolation (estimation of data between data points; for example, 
if the time between measurements is not small enough).

• Extrapolation (estimation of data beyond data points; for example, 
if you are looking for data values before or after the measurements 
were taken).

• Differentiation of digital data. (For example, if you need to find the 
derivative of the data points. The discrete data can be modeled by a 
polynomial, and the resulting polynomial equation can be 
differentiated.)

• Integration of digital data (for example, to find the area under a curve 
when you have only the discrete points of the curve).

• Obtaining the trajectory of an object based on discrete measurements 
of its velocity (first derivative) or acceleration (second derivative).
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General LS Linear Fit Theory
The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear 
“model.”

 i = 0, 1, …, n – 1 (9-4)

where B is the set of Coefficients, n is the number of elements in Y Values 
and the number of rows of H, and k is the number of Coefficients.

 is your observation data, which is contained in H.

Equation 9-4 also can be written as Y = HB.

This is a multiple linear regression model, which uses several variables 
xi0, xi1, …, xik – 1, to predict one variable yi. In contrast, the Linear Fit, 
Exponential Fit, and Polynomial Fit VIs are all based on a single predictor 
variable, which uses one variable to predict another variable.
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In most cases, we have more observation data than coefficients. The 
equations in 9-4 may not have the solution. The fit problem becomes to find 
the coefficient B that minimizes the difference between the observed data, 
yi and the predicted value:

This VI uses the least chi-square plane method to obtain the coefficients 
in 9-4, that is, finding the solution, B, which minimizes the quantity:

 = |H0B – Y0|2 (9-5)

where

, , i = 0, 1, …, n – 1; j = 0, 1, …, k–1

In this equation,  is the Standard Deviation. If the measurement errors 
are independent and normally distributed with constant standard deviation 

, the preceding equation is also the least square estimation.

zi bjxij

j 0=

k 1–

∑=

χ2 yi z– i

σi
------------- 
 

2

i 0=

n 1–

∑
yi bjxij

j 0=

k 1–

∑–

σi
-----------------------------

 
 
 
 
 
 
 
 

2

i 0=

n 1–

∑= =

hoij
xij

σi
-----= yoi

yi

σi
-----=

σi

σi σ=
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There are different ways to minimize . One way to minimize  is to set 
the partial derivatives of  to zero with respect to b0, b1, …, bk – 1.

The preceding equations can be derived to:

(9-6)

Where  is the transpose of H0.

The equations in 9-6 are also called normal equations of the least-square 
problems. You can solve them using LU or Cholesky factorization 
algorithms, but the solution from the normal equations is susceptible to 
roundoff error.

An alternative, and preferred way to minimize  is to find the least-square 
solution of equations 

H0B = Y0

You can use QR or SVD factorization to find the solution, B. For QR 
factorization, you can choose Householder, Givens, and Givens2 (also 
called fast Givens).

Different algorithms can give you different precision, and in some cases, 
if one algorithm cannot solve the equation, perhaps another algorithm can. 
You can try different algorithms to find the best one based on your 
observation data.

The Covariance matrix C is computed as

χ2 χ2

χ2

∂χ2

∂b0
-------- 0=

∂χ2

∂b1
--------- 0=

.

.

.

.
∂χ2

∂bk 1–

-------------- 0=
















H0
TH0B H0

TY=

H0
T

χ2

C H0
TH0( ) 1–

=
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The Best Fit Z is given by

The mse is obtained using the following formula:

The polynomial fit that has a single predictor variable can be thought of as a 
special case of multiple regression. If the observation data sets are  
where i = 0, 1, …, n – 1, the model for polynomial fit is

(9-7)

i = 0, 1, 2, …, n – 1

Comparing equations 9-4 and 9-7 shows that . In other words, 

,

In this case, you can build H as follows:

zi bjxij

j 0=

k 1–

∑=

mse 1
n
---

yi z– i

σi
------------- 
 

2

i 0=

n 1–

∑=

xi yi,{ }

yi bjx i
j

j 0=

k 1–

∑= b0 b1xi b2xi
2 � bk 1– xi

k 1–+ + + +=

xij xj
i=

xi0 xi
0=

1= xi1 xi= xi2, x2
i � xik 1–, xk 1–

i= =

H

1 x0 x2
0 � xk 1–

0

1 x1 x2
1 � xk 1–

1

.

.

.

.
1 xn 1– x2

n 1– � xk 1–
n 1– 

 
 
 
 
 
 
 
 
 
 
 
 

=
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Instead of using , you also can choose another function formula 
to fit the data sets {xi, yi}. In general, you can select xij = fj(xi). Here, fj(xi) 
is the function model that you choose to fit your observation data. 
In polynomial fit, .

In general, you can build H as follows:

Your fit model is:

How to Use the General LS Linear Fit VI
The Linear Fit VI calculates the coefficients a0 and a1 that best fits the 
experimental data (x[i] and y[i]) to a straight line model given by 

y[i] = a0 + a1x[i]

Here, y[i] is a linear combination of the coefficients a0 and a1. You can 
extend this concept further so that the multiplier for a1 is some function 
of x. For example:

y[i] = a0 + a1sin(ωx[i])

or

y[i] = a0 + a1(x[i])2

or

y[i] = a0 + a1cos(ωx[i]2)

xij xi
j=

fj xi( ) xj
i=

H

f0 x0( ) f1 x0( ) f2 x0( ) � fk 1– x0( )

f0 x1( ) f1 x1( ) f2 x1( ) � fk 1– x1( )

.

.

.
.

f0 xn 1–( ) f1 xn 1–( ) f2 xn 1–( ) � fk 1– xn 1–( )
 
 
 
 
 
 
 
 
 
 
 
 
 

=

yi b0f0 x( ) b1f1 x( ) … bk 1– fk 1– x( )+ + +=
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where ω is the angular frequency. In each of these cases, y[i] is a linear 
combination of the coefficients a0 and a1. This is the basic idea behind the 
General LS Linear Fit VI, where the y[i] can be linear combinations of 
several coefficients, each of which may be multiplied by some function of 
the x[i]. Therefore, you can use it to calculate coefficients of the functional 
models that can be represented as linear combinations of the coefficients, 
such as

y = a0 + a1sin(ωx)

or

y = a0 + a1x2 + a2cos(ωx2)

y = a0 + a1(3sin(ωx)) + a2x3 + + ...

In each case, notice that y is a linear function of the coefficients (although 
it may be a nonlinear function of x).

You will now see how to use the General LS Linear Fit VI to find the best 
linear fit to a set of data points. The inputs and outputs of the General LS 
Linear Fit VI are shown in Figure 9-1.

 

Figure 9-1.  General LS Linear Fit VI

The data that you collect (x[i] and y[i]) is to be given to the inputs H and 
Y Values. The Covariance output is the matrix of covariances between the 
coefficients ak, where cij is the covariance between ai and aj, and ckk is the 
variance of ak. At this stage, you need not be concerned about the inputs 
Standard Deviation, covariance selector, and algorithm. For now, you 
will just use their default values. Refer to the LabVIEW Help, available by 
selecting Help»VI, Function, & How-To Help, for more information 
about these inputs.

a3

x
-----
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The matrix H is known as the Observation Matrix and will be explained 
in more detail later. Y Values is the set of observed data points y[i]. 
For example, suppose you have collected samples (Y Values) from a 
transducer and you want to solve for the coefficients of the model:

You see that the multiplier for each aj is a different function. For example, 
a0 is multiplied by 1, a1 is multiplied by sin(ωx), a2 is multiplied by 
cos(ωx), and so on. To build H, you set each column of H to the 
independent functions evaluated at each x value, x[i]. Assuming there are 
100 x values, H would be:

If you have N data points and k coefficients (a0, a1, … ak–1) for which to 
solve, H will be an N × k matrix with N rows and k columns. Thus, the 
number of rows of H is equal to the number of elements in Y Values, 
whereas the number of columns of H is equal to the number of coefficients 
for which you are trying to solve.

In practice, H is not available and must be built. Given that you have 
the N independent X Values and observed Y Values, use the General LS 
Linear Fit VI to build H.

y ao a1 ωx( )sin a2 ωx( )cos a3x2+ + +=

H

1 ωx0( )sin ωx0( )cos x0
2

1 ωx1( )sin ωx1( )cos x1
2

1 ωx2( )sin ωx2( )cos x2
2

… … … …

1 ωx99( )sin ωx99( )cos x99
2

=
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Nonlinear Lev-Mar Fit Theory
The Nonlinear Lev-Mar Fit VI determines the set of coefficients that 
minimize the chi-square quantity:

(9-8)

In this equation, (xi, yi) are the input data points, and f(xi; a1... aM) = f(X, A) 
is the nonlinear function where a1...aM are coefficients. If the measurement 
errors are independent and normally distributed with constant, standard 
deviation , this is also the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on 
the block diagram of the Target Fnc & Deriv NonLin VI, which is a subVI 
of the Nonlinear Lev-Mar Fit VI.

This VI provides two ways to calculate the Jacobian (partial derivatives 
with respect to the coefficients) needed in the algorithm. These two 
methods follow:

• Numerical calculation—Uses a numerical approximation to compute 
the Jacobian.

• Formula calculation—Uses a formula to compute the Jacobian. 
You need to specify the Jacobian function  in the Formula Node 
on the block diagram of the Target Fnc & Deriv NonLin VI, as well as 
the nonlinear function f = f(X, A). This is a more efficient computation 
than the numerical calculation, because it does not require a numerical 
approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI 
assumes that you have prior knowledge of the nonlinear relationship 
between the x and y coordinates. That is, f = f(X, A), where the set of 
coefficients, A, is determined by the Levenberg-Marquardt algorithm.

Using this function successfully sometimes depends on how close your 
initial guess coefficients are to the solution. Therefore, it is always worth 
taking effort and time to obtain good initial guess coefficients to the 
solution from any available resources before using the function.

χ2 yi f xi a1…aM;( )–

σi
----------------------------------------- 
 

2

i 0=

N 1–

∑=

σi σ=

∂f ∂A⁄
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Using the Nonlinear Lev-Mar Fit VI
So far, you have seen VIs that are used when there is a linear relationship 
between y and the coefficients a0, a1, a2, …. However, when a nonlinear 
relationship exists, you can use the Nonlinear Lev-Mar Fit VI to determine 
the coefficients. This VI uses the Levenberg-Marquardt method, which is 
very robust, to find the coefficients A = {a0, a1, a2, …, ak} of the nonlinear 
relationship between A and y[i]. The VI assumes that you have prior 
knowledge of the nonlinear relationship between the x and y coordinates.

As a preliminary step, you need to specify the nonlinear function in 
the Formula Node on the block diagram of one of the subVIs of the 
Nonlinear Lev-Mar Fit VI. This particular subVI is the Target Fnc and 
Deriv NonLin VI.

When using the Nonlinear Lev-Mar Fit VI, you also must specify the 
nonlinear function in the Formula Node on the block diagram of the 
Target Fnc and Deriv NonLin VI.

The connections to the Nonlinear Lev-Mar Fit VI are shown in Figure 9-2:
 

Figure 9-2.  Nonlinear Lev-Mar Fit VI

X and Y are the input data points x[i] and y[i]. 

Initial Guess Coefficients is your initial guess as to what the coefficient 
values are. The coefficients are those used in the formula that you entered 
in the Formula Node of the Target Fnc and Deriv NonLin VI. Using the 
Nonlinear Lev-Mar Fit VI successfully sometimes depends on how close 
your initial guess coefficients are to the actual solution. Therefore, it is 
always worth taking the time and effort to obtain a good initial guess to the 
solution from any available resource.

For now, you can leave the other inputs to their default values. Refer to the 
LabVIEW Help, available by selecting Help»VI, Function, & How-To 
Help, for more information about these inputs.



© National Instruments Corporation 10-1 LabVIEW Analysis Concepts

10
Linear Algebra

This chapter explains how to use the linear algebra VIs to perform matrix 
computation and analysis. Use the NI Example Finder, available by 
selecting Help»Find Examples, to find examples of how to use the linear 
algebra VIs, available on the Linear Algebra palette.

Linear Systems and Matrix Analysis
Systems of linear algebraic equations arise in many applications that 
involve scientific computations such as signal processing, computational 
fluid dynamics, and others. Such systems may occur naturally or may be 
the result of approximating differential equations by algebraic equations.

Types of Matrices
Whatever the application, it is always necessary to find an accurate solution 
for the system of equations in a very efficient way. In matrix-vector 
notation, such a system of linear algebraic equations has the form

where A is an  matrix, b is a given vector consisting of n elements, and 
x is the unknown solution vector to be determined. A matrix is represented 
by a 2D array of elements. These elements may be real numbers, complex 
numbers, functions, or operators. The matrix A shown below is an array of 
m rows and n columns with  elements.

Here, ai, j denotes the (i, j)th element located in the ith row and the jth column. 
In general, such a matrix is called a rectangular matrix. When m = n, so that 
the number of rows is equal to the number of columns, it is called a square 
matrix. An  matrix (m rows and one column) is called a column 

Ax b=

n n×

m n×

A

a0 0, a0 1, … a0 n 1–,

a1 0, a1 1, … a1 n 1–,

… … … …
am 1– 0, am 1– 1, … am 1– n 1–,

=

m 1×
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vector. A row vector is a  matrix (1 row and n columns). If all the 
elements other than the diagonal elements are zero (that is, ai, j = 0, ), 
such a matrix is called a diagonal matrix. For example,

is a diagonal matrix. A diagonal matrix with all the diagonal elements equal 
to one is called an identity matrix, also known as unit matrix. If all the 
elements below the main diagonal are zero, then the matrix is known as an 
upper triangular matrix. On the other hand, if all the elements above the 
main diagonal are zero, then the matrix is known as a lower triangular 
matrix. When all the elements are real numbers, the matrix is referred to as 
a real matrix. On the other hand, when at least one of the elements of the 
matrix is a complex number, the matrix is referred to as a complex matrix.

Determinant of a Matrix
One of the most important attributes of a matrix is its determinant. In the 
simplest case, the determinant of a 2 × 2 matrix

 

is given by ad – bc. The determinant of a square matrix is formed by taking 
the determinant of its elements. For example, if

then the determinant of A, denoted by , is

 

= =

= –196

1 n×
i j≠

A
4 0 0
0 5 0
0 0 9

=

A a b
c d

=

A
2 5 3
6 1 7
1 6 9

=

A

A 2 5 3
6 1 7
1 6 9

2 1 7
6 9

5 6 7
1 9

– 3 6 1
1 6

+
 
 
 

=

2 33–( ) 5 47( )– 3 35( )+
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The determinant tells many important properties of the matrix. For 
example, if the determinant of the matrix is zero, then the matrix is 
singular. In other words, the above matrix (with nonzero determinant) is 
nonsingular. Refer to the Matrix Inverse and Solving Systems of Linear 
Equations section of this chapter for more information about singularity 
and the solution of linear equations and matrix inverses.

Transpose of a Matrix
The transpose of a real matrix is formed by interchanging its rows and 
columns. If the matrix B represents the transpose of A, denoted by AT, 
then bj, i = ai, j. For the matrix A defined above,

In the case of complex matrices, we define complex conjugate 
transposition. If the matrix D represents the complex conjugate transpose 
(if a = x + iy, then complex conjugate a* = x – iy) of a complex matrix C, 
then

That is, the matrix D is obtained by replacing every element in C by its 
complex conjugate and then interchanging the rows and columns of the 
resulting matrix.

A real matrix is called a symmetric matrix if the transpose of the matrix is 
equal to the matrix itself. The example matrix A is not a symmetric matrix. 
If a complex matrix C satisfies the relation C = CH, then C is called a 
Hermitian matrix.

Linear Independence
A set of vectors x1, x2, …, xn is said to be linearly dependent if and only if 
there exist scalars α1, α2, …, αn, not all zero, such that

 

In simpler terms, if one of the vectors can be written in terms of a linear 
combination of the others, then the vectors are said to be linearly 
dependent.

B AT
2 6 1
5 1 6
3 7 9

==

D CH di j, c∗j i,=⇒=

α1x1 α2x2 … αnxn+ + + 0=
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If the only set of αi for which the above equation holds is , , 
…, , then the set of vectors x1, x2, …, xn is said to be linearly 
independent. So, in this case, none of the vectors can be written in terms of 
a linear combination of the others. Given any set of vectors, the above 
equation always holds for , , …, . Therefore, to 
show the linear independence of the set, you must show that , 

, …,  is the only set of αi for which the above equation 
holds.

For example, first consider the vectors

Notice that  and  are the only values, for which the relation 
 holds true. Hence, these two vectors are linearly 

independent of each other. Let us now look at vectors

Notice that, if  and , then . Therefore, 
these two vectors are linearly dependent on each other. You must 
completely understand this definition of linear independence of vectors to 
fully appreciate the concept of the rank of the matrix as discussed next.

Matrix Rank
The rank of a matrix A, denoted by ρ(A), is the maximum number of 
linearly independent columns in A. If you look at the example matrix A, 
you will find that all the columns of A are linearly independent of each 
other. That is, none of the columns can be obtained by forming a linear 
combination of the other columns. Hence, the rank of the matrix is 3. 
Consider one more example matrix, B, where

This matrix has only two linearly independent columns, because the third 
column of B is linearly dependent on the first two columns. Hence, the rank 
of this matrix is 2. It can be shown that the number of linearly independent 

α1 0= α2 0=
αn 0=

α1 0= α2 0= αn 0=
α1 0=

α2 0= αn 0=

x 1
2

= y 3
4

=

α1 0= α2 0=
α1x α2y+ 0=

x 1
2

= y 2
4

=

α1 2–= α2 1= α1x α2y+ 0=

B
0 1 1
1 2 3
2 0 2

=
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columns of a matrix is equal to the number of independent rows. So, the 
rank can never be greater than the smaller dimension of the matrix. 
Consequently, if A is an  matrix, then

 

where min denotes the minimum of the two numbers. In matrix theory, 
the rank of a square matrix pertains to the highest order nonsingular matrix 
that can be formed from it. Remember from the earlier discussion that a 
matrix is singular if its determinant is zero. So, the rank pertains to the 
highest order matrix that you can obtain whose determinant is not zero. 
For example, consider a 4 × 4 matrix

For this matrix, , but

Hence, the rank of B is 3. A square matrix has full rank if and only if its 
determinant is different from zero. Matrix B is not a full-rank matrix.

“Magnitude” (Norms) of Matrices
You must develop a notion of the “magnitude” of vectors and matrices to 
measure errors and sensitivity in solving a linear system of equations. 
As an example, these linear systems can be obtained from applications in 
control systems and computational fluid dynamics. In two dimensions, 
for example, you cannot compare two vectors x = [x1 x2] and y = [y1 y2], 
because you might have x1 > y1 but x2 < y2. A vector norm is a way to 
assign a scalar quantity to these vectors so that they can be compared with 
each other. It is similar to the concept of magnitude, modulus, or absolute 
value for scalar numbers.

There are ways to compute the norm of a matrix. These include the 2-norm 
(Euclidean norm), the 1-norm, the Frobenius norm (F-norm), and the 
Infinity norm (inf-norm). Each norm has its own physical interpretation. 

n m×

ρ A( ) min n m,( )≤

B

1 2 3 4
0 1 1– 0
1 0 1 2
1 1 0 2

=

det B( ) 0=

1 2 3
0 1 1–

1 0 1

1–=
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Consider a unit ball containing the origin. The Euclidean norm of a vector 
is simply the factor by which the ball must be expanded or shrunk in order 
to encompass the given vector exactly. This is shown in Figure 10-1.

Figure 10-1.  Euclidean Norm of a Vector

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a vector of 
length  =  = . As shown in Figure 1c, the unit ball must 
be expanded by a factor of  before it can exactly encompass the given 
vector. Hence, the Euclidean norm of the vector is .

The norm of a matrix is defined in terms of an underlying vector norm. It is 
the maximum relative stretching that the matrix does to any vector. With the 
vector 2-norm, the unit ball expands by a factor equal to the norm. On the 
other hand, with the matrix 2-norm, the unit ball may become an ellipsoidal 
(ellipse in 3D), with some axes longer than others. The longest axis 
determines the norm of the matrix.

Some matrix norms are much easier to compute than others. The 1-norm 
is obtained by finding the sum of the absolute value of all the elements in 
each column of the matrix. The largest of these sums is called the 1-norm. 
In mathematical terms, the 1-norm is simply the maximum absolute 
column sum of the matrix.

1 Unit ball of radius = unit

2 Vector of length  =  = 

3 Unit ball expanded by a factor of 

1

1

2

2

2

2

2 22 2

1 2 3

1

22 22+ 8 2 2

2 2

22 22+ 8 2 2
2 2

2 2
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For example,

then

The inf-norm of a matrix is the maximum absolute row sum of the matrix

In this case, you add the magnitudes of all elements in each row of the 
matrix. The maximum value that you get is called the inf-norm. For the 
above example matrix, 

The 2-norm is the most difficult to compute because it is given by the 
largest singular value of the matrix. Refer to the Matrix Factorization 
section of this chapter for more information about singular values.

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magnitude 
of the matrix, the condition number of a matrix is a measure of how close 
the matrix is to being singular. The condition number of a square 
nonsingular matrix is defined as

 

where p can be one of the four norm types discussed above. For example, 
to find the condition number of a matrix A, you can find the 2-norm of A, 
the 2-norm of the inverse of the matrix A, denoted by A–1, and then multiply 
them together (the inverse of a square matrix A is a square matrix B such 

A 1 maxj ai j,

i 0=

n 1–

∑=

A 1 3
2 4

=

A 1 max 3 7,( ) 7= =

A ∞ maxi ai j,

j 0=

n 1–

∑=

A ∞ max 4 6,( ) 6= =

cond A( ) A p A 1–
p⋅=
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that AB = I, where I is the identity matrix). As mentioned earlier, the 
2-norm is difficult to calculate on paper. You can use the Matrix Norm VI 
to compute the 2-norm. For example,

The condition number can vary between 1 and infinity. A matrix with a 
large condition number is nearly singular, while a matrix with a condition 
number close to 1 is far from being singular. The matrix A above is 
nonsingular. However, consider the matrix

The condition number of this matrix is 47,168, and hence the matrix is close 
to being singular. As you might recall, a matrix is singular if its determinant 
is equal to zero. However, the determinant is not a good indicator for 
assessing how close a matrix is to being singular. For the matrix B above, 
the determinant (0.0299) is nonzero; however, the large condition number 
indicates that the matrix is close to being singular. Remember that the 
condition number of a matrix is always greater than or equal to one; the 
latter being true for identity and permutation matrices (a permutation 
matrix is an identity matrix with some rows and columns exchanged). 
The condition number is a very useful quantity in assessing the accuracy 
of solutions to linear systems.

In this section, you have become familiar with some basic notation and 
fundamental matrix concepts such as determinant of a matrix and its rank.

A 1 2
3 4

A 1–, 2– 1
1.5 0.5–

A 2, 5.4650 A 1–
2,

2.7325 cond A( ), 14.9331

= = =

= =

B 1 0.99
1.99 2

=
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Basic Matrix Operations and 
Eigenvalues-Eigenvector Problems

In this section, consider some very basic matrix operations. Two matrices, 
A and B, are said to be equal if they have the same number of rows and 
columns and their corresponding elements are all equal. Multiplication of 
a matrix A by a scalar  is equal to multiplication of all its elements by the 
scalar. That is,

 

For example,

Two (or more) matrices can be added or subtracted if and only if they 
have the same number of rows and columns. If both matrices A and B have 
m rows and n columns, then their sum C is an m × n matrix defined as 

, where ci, j = ai, j ± bi, j. For example,

 

For multiplication of two matrices, the number of columns of the first 
matrix must be equal to the number of rows of the second matrix. If matrix 
A has m rows and n columns and matrix B has n rows and p columns, then 
their product C is an m × p matrix defined as C = AB, where

 

For example,

So, you multiply the elements of the first row of A by the corresponding 
elements of the first column of B and add all the results to get the elements 

α

C αA ci j,⇒ αai j,= =

2 1 2
3 4

2 4
6 8

=

C A B±=

1 2
3 4

2 4
5 1

+ 3 6
8 5

=

ci j, ai k, bk j,

k 0=

n 1–

∑=

1 2
3 4

2 4
5 1

× 12 6
26 16

=
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in the first row and first column of C. Similarly, to calculate the element in 
the ith row and the jth column of C, multiply the elements in the ith row of A 
by the corresponding elements in the jth column of C, and then add them all. 
This is shown pictorially in Figure 10-2.

 

Figure 10-2.  Matrix Multiplication

Matrix multiplication, in general, is not commutative, that is, . 
Also, remember that multiplication of a matrix by an identity matrix results 
in the original matrix.

Dot Product and Outer Product
If X represents a vector and Y represents another vector, then the dot 
product of these two vectors is obtained by multiplying the corresponding 
elements of each vector and adding the results. This is denoted by

where n is the number of elements in X and Y. Notice that both vectors must 
have the same number of elements. The dot product is a scalar quantity, and 
has many practical applications.

For example, consider the vectors a = 2i + 4j and b = 2i + j in a 
two-dimensional rectangular coordinate system, illustrated in Figure 10-3.

Rn • C1 Rn • Cm

R1 • C1 R1 • Cm

R1

Rn

X
C1 Cm

=

AB BA≠

X Y• xiyi

i 0=

n 1–

∑=
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Figure 10-3.  Vectors a and b

Then the dot product of these two vectors is given by

The angle α between these two vectors is given by

where |a| denotes the magnitude of a.

As a second application, consider a body on which a constant force a acts, 
as shown in Figure 10-4. The work W done by a in displacing the body is 
defined as the product of |d| and the component of a in the direction of 
displacement d. That is,

 

Figure 10-4.  Force Vector

a=2i+4j

α=36.86°

b=2i+j

d 2
4

2
1

• 2 2×( ) 4 1×( )+ 8= = =

α inv a b•
a b
------------ 
 cos inv 8

10
------ 
 cos 36.86o= = =

W a d αcos a d•= =

d

Force a

Body
α

α
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On the other hand, the outer product of these two vectors is a matrix. 
The (i, j)th element of this matrix is obtained using the formula

For example,

Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical 
definition. Given an  matrix A, the problem is to find a scalar λ and a 
nonzero vector x such that

 

Such a scalar λ is called an eigenvalue, and x is a corresponding 
eigenvector.

Calculating the eigenvalues and eigenvectors are fundamental principles of 
linear algebra and allow you to solve many problems such as systems of 
differential equations when you understand what they represent. Consider 
an eigenvector x of a matrix A as a nonzero vector that does not rotate when 
x is multiplied by A (except perhaps to point in precisely the opposite 
direction). x may change length or reverse its direction, but it will not turn 
sideways. In other words, there is some scalar constant λ such that the 
above equation holds true. The value λ is an eigenvalue of A. 

Consider the following example. One of the eigenvectors of the matrix A, 
where

is

ai j, xi yj×=

1
2

3
4

× 3 4
6 8

=

n n×

Ax λx=

A 2 3
3 5

=

x 0.62
1.00

=
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Multiplying the matrix A and the vector x simply causes the vector x 
to be expanded by a factor of 6.85. Hence, the value 6.85 is one of the 
eigenvalues of the vector x. For any constant , the vector  is also an 
eigenvector with eigenvalue λ, because

 

In other words, an eigenvector of a matrix determines a direction in 
which the matrix expands or shrinks any vector lying in that direction by 
a scalar multiple, and the expansion or contraction factor is given by the 
corresponding eigenvalue. A generalized eigenvalue problem is to find a 
scalar λ and a nonzero vector x such that

where B is another  matrix.

The following are some important properties of eigenvalues and 
eigenvectors:

• The eigenvalues of a matrix are not necessarily all distinct. In other 
words, a matrix can have multiple eigenvalues. 

• All the eigenvalues of a real matrix need not be real. However, complex 
eigenvalues of a real matrix must occur in complex conjugate pairs. 

• The eigenvalues of a diagonal matrix are its diagonal entries, and the 
eigenvectors are the corresponding columns of an identity matrix of 
the same dimension. 

• A real symmetric matrix always has real eigenvalues and eigenvectors.

• Eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and 
engineering for an eigenvalue problem. For example, the stability of a 
structure and its natural modes and frequencies of vibration are determined 
by the eigenvalues and eigenvectors of an appropriate matrix. Eigenvalues 
are also very useful in analyzing numerical methods, such as convergence 
analysis of iterative methods for solving systems of algebraic equations, 
and the stability analysis of methods for solving systems of differential 
equations.

The EigenValues and Vectors VI is shown in Figure 10-5. The Input 
Matrix is an N × N real square matrix. Matrix type determines the type of 
the input matrix. Matrix type could be 0, indicating a general matrix, or 1, 
indicating a symmetric matrix. A symmetric matrix always has real 

α αx

A αx( ) αAx λαx==

Ax λBx=

n n×
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eigenvalues and eigenvectors. A general matrix has no special property 
such as symmetry or triangular structure.

 

Figure 10-5.  EigenValues and Vectors VI

Output option determines what needs to be computed. Output option = 0 
indicates that only the eigenvalues need to be computed. Output option = 1 
indicates that both the eigenvalues and the eigenvectors should be 
computed. It is computationally very expensive to compute both the 
eigenvalues and the eigenvectors. So, it is important that you use the output 
option control in the EigenValues and Vectors VI very carefully. Depending 
on your particular application, you might just want to compute the 
eigenvalues or both the eigenvalues and the eigenvectors. Also, a 
symmetric matrix needs less computation than an nonsymmetric matrix. 
So, choose the matrix type control carefully. 

Matrix Inverse and Solving Systems of Linear Equations
The inverse, denoted by A–1, of a square matrix A is a square matrix 
such that

where I is the identity matrix. The inverse of a matrix exists if and only 
if the determinant of the matrix is not zero, (that is, it is nonsingular). 
In general, you can find the inverse of only a square matrix. You can, 
however, compute the pseudoinverse of a rectangular matrix. Refer to the 
Matrix Factorization section of this chapter for more information about the 
pseudoinverse of a rectangular matrix.

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has the form Ax = b, 
where A is a  matrix and b is a given n-vector. The aim is to determine 
x, the unknown solution n-vector. There are two important questions to be 
asked about the existence of such a solution. Does such a solution exist, and 
if it does is it unique? The answer to both of these questions lies in 
determining the singularity or nonsingularity of the matrix A.

A 1– A AA 1– I= =

n n×
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As discussed earlier, a matrix is said to be singular if it has any one of the 
following equivalent properties:

• The inverse of the matrix does not exist.

• The determinant of the matrix is zero.

• The rows (or columns) of A are linearly dependent.

•  Az = 0 for some vector .

Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its inverse 
 exists, and the system Ax = b has a unique solution:  

regardless of the value for b. On the other hand, if the matrix is singular, 
then the number of solutions is determined by the right-hand-side vector b. 
If A is singular and Ax = b, then  for any scalar , where 
the vector z is as in the last definition above. Thus, if a singular system has 
a solution, then the solution cannot be unique.

It is not a good idea to explicitly compute the inverse of a matrix, because 
such a computation is prone to numerical inaccuracies. Therefore, it is not 
a good strategy to solve a linear system of equations by multiplying the 
inverse of the matrix A by the known right-hand-side vector. The general 
strategy to solve such a system of equations is to transform the original 
system into one whose solution is the same as that of the original system, 
but is easier to compute. One way to do so is to use the Gaussian 
Elimination technique. The three basic steps involved in the Gaussian 
Elimination technique are as follows. First, express the matrix A as a 
product

where L is a unit lower triangular matrix and U is an upper triangular 
matrix. Such a factorization is known as LU factorization. Given this, the 
linear system Ax = b can be expressed as LUx = b. Such a system can then 
be solved by first solving the lower triangular system Ly = b for y by 
forward-substitution. This is the second step in the Gaussian Elimination 
technique. For example, if

 

then

z 0≠

A 1– x A 1– b=

A x ϒz+( ) b= ϒ

A LU=

l a 0
b c

= y p
q

= b r
s

=

p r
a
--- q, s bp–( )

c
-------------------= =
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The first element of y can be easily determined due to the lower triangular 
nature of the matrix L. Then you can use this value to compute the 
remaining elements of the unknown vector sequentially. Hence, the name 
forward-substitution. The final step involves solving the upper triangular 
system  by back-substitution. For example, if

then

In this case, this last element of x can be easily determined and then 
used to determine the other elements sequentially. Hence, the name 
back-substitution. So far, this chapter has discussed the case of square 
matrices. Because a nonsquare matrix is necessarily singular, the system 
of equations must have either no solution or a nonunique solution. In such 
a situation, you usually find a unique solution x that satisfies the linear 
system in an approximate sense.

The Linear Algebra palette provides VIs for computing the inverse of a 
matrix, computing LU decomposition of a matrix, and solving a system of 
linear equations. It is important to identify the input matrix properly, as it 
helps avoid unnecessary computations, which in turn helps to minimize 
numerical inaccuracies. The four possible matrix types are general 
matrices, positive definite matrices, and lower and upper triangular 
matrices. A real matrix is positive definite if and only if it is symmetric and 
the quadratic form for all nonzero vectors is X. If the input matrix is square, 
but does not have a full rank (a rank-deficient matrix), then the VI finds the 
least square solution x. The least square solution is the one which 
minimizes the norm of . The same holds true also for nonsquare 
matrices.

Matrix Factorization
The Matrix Inverse and Solving Systems of Linear Equations section 
discusses how a linear system of equations can be transformed into a 
system whose solution is simpler to compute. The basic idea was to 
factorize the input matrix into the multiplication of several, simpler 
matrices. You looked at one such technique, the LU decomposition 
technique, in which you factorized the input matrix as a product of upper 

Ux y=

U a b
0 c

= x m
n

= y p
q

=

n q
c
--- m, p bn–( )

a
--------------------= =

Ax b–
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and lower triangular matrices. Other commonly used factorization methods 
are Cholesky, QR, and the Singular Value Decomposition (SVD). You can 
use these factorization methods to solve many matrix problems, such as 
solving linear system of equations, inverting a matrix, and finding the 
determinant of a matrix.

If the input matrix A is symmetric and positive definite, then an 
LU factorization can be computed such that A = UT U, where U is an upper 
triangular matrix. This is called Cholesky factorization. This 
method requires only about half the work and half the storage compared 
to LU factorization of a general matrix by Gaussian elimination. It is easy 
to determine if a matrix is positive definite by using the Test Positive 
Definite VI.

A matrix Q is orthogonal if its columns are orthonormal. That is, 
if QT Q = I, the identity matrix. QR factorization technique factors a matrix 
as the product of an orthogonal matrix Q and an upper triangular matrix R. 
That is, A = QR. QR factorization is useful for both square and rectangular 
matrices. A number of algorithms are possible for QR factorization, such 
as the Householder transformation, the Givens transformation, and the 
Fast Givens Transformation.

The Singular Value Decomposition (SVD) method decomposes a matrix 
into the product of three matrices: A = USVT. U and V are orthogonal 
matrices. S is a diagonal matrix whose diagonal values are called the 
singular values of A. The singular values of A are the nonnegative square 
roots of the eigenvalues of AT A, and the columns of U and V, which are 
called left and right singular vectors, are orthonormal eigenvectors of AAT 
and ATA, respectively. SVD is useful for solving analysis problems such as 
computing the rank, norm, condition number, and pseudoinverse of 
matrices. The Pseudoinverse section discusses this last application.

Pseudoinverse
The pseudoinverse of a scalar  is defined as  if , and zero 
otherwise. In case of scalars, pseudoinverse is the same as the inverse. 
You can now define the pseudoinverse of a diagonal matrix by transposing 
the matrix and then taking the scalar pseudoinverse of each entry. Then the 
pseudoinverse of a general real  matrix A, denoted by , is given by

Notice that the pseudoinverse exists regardless of whether the matrix 
is square or rectangular. If A is square and nonsingular, then the 

σ 1 σ⁄ σ 0≠

m n× A†

A† VS†UT=
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pseudoinverse is the same as the usual matrix inverse. The Linear Algebra 
palette includes a VI for computing the pseudoinverse of real and complex 
matrices.

Summary

• A matrix can be considered as a two-dimensional array of m rows and 
n columns. Determinant, rank, and condition number are some 
important attributes of a matrix.

• The condition number of a matrix affects the accuracy of the final 
solution.

• The determinant of a diagonal matrix, an upper triangular matrix, or a 
lower triangular matrix is the product of its diagonal elements.

• Two matrices can be multiplied only if the number of columns of the 
first matrix is equal to the number of rows in the second matrix.

• An eigenvector of a matrix is a nonzero vector that does not rotate 
when the matrix is applied to it. Similar matrices have the same 
eigenvalues.

• The existence of a unique solution for a system of equations depends 
on whether the matrix is singular or nonsingular.
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11
Probability and Statistics

This chapter explains some fundamental concepts on probability and 
statistics and shows how to use these concepts in solving real-world 
problems. Use the NI Example Finder, available by selecting Help»Find 
Examples, to find examples of how to use the probability and statistics VIs, 
available on the Probability and Statistics palette.

Probability and Statistics
Facts and figures form an important part of life. Statements such as “There 
is a 60% chance of thunderstorms,” “Joe was ranked among the top five in 
the class,” “Michael has an average of 30 points a game this season,” and 
so on are common. These statements give a lot of information, but we 
seldom think how this information was obtained. Was there a lot of data 
involved in obtaining this information? If there was, how did someone 
condense it to single numbers such as 60% chance and average of 30 points 
or terms such as top five. The answer to all these questions brings up the 
very interesting field of statistics.

First, consider how information, or data, is generated. Consider a sports 
player. In a season, the player is in 51 games and scores a total of 1,568 
points. The total of 1,568 points includes 45 points in Game A, 36 points in 
Game B, 51 points in Game C, 45 points in Game D, and 40 points in Game 
E. As the number of games increases, it becomes increasingly difficult to 
remember how many points the player scored in each individual game. The 
question is how to condense the data so that it brings out all the essential 
information and is yet easy to remember. This is where the term statistics 
comes into the picture. To condense all the data, single numbers must make 
it more intelligible and help draw useful inferences. If you divide the total 
number of points that the player scored by the number of games played, you 
have a single number and can call it points per game average, as shown in 
the following equation.

1,568 points
51 games

----------------------------- 30.7 points per game average=



Chapter 11 Probability and Statistics

LabVIEW Analysis Concepts 11-2 ni.com

Another important aspect of statistics is percentage. For example, the 
officials of an American city are considering installing a traffic signal at a 
major intersection. The traffic signal is intended to protect motorists 
turning left from oncoming traffic. However, the city only has enough 
money to fund one traffic signal but has three intersections that potentially 
need the signal. Each of the three intersections is studied for a week. A 
count is kept of the total number of cars using the intersection, the number 
of cars travelling straight through the intersection, the number of cars 
making left-hand turns, and the number of cars making right-hand turns. 
The data collected for one of the intersections is shown in Table 11-1.

Looking only at the raw data from each intersection might make 
determining which intersection needs the traffic signal difficult, because 
the raw numbers can vary widely. However, computing the percentage of 
cars turning at each intersection provides a common basis for comparison. 
To obtain the percentage of cars turning left, divide the number of cars 
turning left by the total number of cars using the intersection and multiply 
that result by 100. For the intersection whose data is shown in Table 11-1, 
the following equation gives the percentage of cars turning left.

Table 11-1.  Data for One Major Intersection

Day

Total Number 
of Cars Using 

the Intersection
Number of Cars 

Turning Left
Number of Cars 
Turning Right

Number of Cars 
Continuing 

Straight

1 1,258 528 330 400

2 1,306 549 340 417

3 1,355 569 352 434

4 1,227 515 319 393

5 1,334 560 346 428

6 694 291 180 223

7 416 174 108 134

Totals 7,590 3,186 1,975 2,429

3,186
7,590
------------- 100× 42%=
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For the intersection represented by the data in Table 11-1, 42% of the cars 
using that intersection turn left. Given the data for the other two 
intersections, the city officials can obtain the percentage of cars turning left 
at those two intersections. Thus, you can condense the information for the 
three intersections into single numbers representing the percentage of cars 
that turn left at each intersection. The city officials can compare the 
percentage of cars turning left at each intersection and rank the 
intersections in order of highest percentage of cars turning left to the lowest 
percentage of cars turning left. Ranking the intersections can help 
determine where the traffic signal is needed most. Thus, in a broad sense, 
the term statistics implies different ways to summarize data to derive useful 
and important information from it.

The next question is, what is probability? You have looked at ways to 
summarize lots of data into single numbers. These numbers then help draw 
conclusions for the present. For example, comparing the percentage of cars 
turning left at the three different intersections can help city officials decide 
where to place a traffic signal. But can you say anything about the future? 
Can you measure the degree of accuracy in the inference and use it for 
making future decisions? The answer lies in the theory of probability. 
Whereas, in laymen’s terms, it is probable that the remaining two 
intersections will need traffic signals in the future, you can use different 
concepts in the field of probability, as discussed later in this chapter, to 
make more quantitative statements.

In a completely different scenario, there may be certain experiments whose 
outcomes cannot be predetermined, but certain outcomes may be more 
probable. This once again leads to the notion of probability. For example, 
if you flip an unbiased coin in the air, what is the chance that it will land 
heads up? The chance or probability is 50%. That means, if you repeatedly 
flip the coin, half the time it will land heads up. Does this mean that 
10 tosses will result in exactly five heads? Will 100 tosses result in exactly 
50 heads? Probably not. But in the long run, the probability will work out 
to be 0.5.

To summarize, whereas statistics allows you to summarize data and draw 
conclusions for the present, probability allows you to measure the degree 
of accuracy in those conclusions and use them for the future.



Chapter 11 Probability and Statistics

LabVIEW Analysis Concepts 11-4 ni.com

Statistics
In this section, you will look at different concepts and terms commonly 
used in statistics and see how to use the Analysis VIs in different 
applications.

Mean
Consider a data set X consisting of n samples x0, x1, x2, x3, …, xn – 1. 
The mean value, or average, is denoted by x and is defined by the formula

In other words, it is the sum of all the sample values divided by the number 
of samples. As in the sports example, the data set consisted of 51 samples. 
Each sample was equal to the number of points that the player scored in 
each game. The total of all these points was 1,568, divided by the number 
of samples (51) to get a mean or average value of 30.7.

The input-output connections for the Mean VI are shown below.

Median
Let represent the sorted sequence of the data 
set X. The sequence can be sorted either in the ascending order or in 
descending order. The median of the sequence is denoted by  and is 
obtained by the formula

where

 and 

In words, the median of a data sequence is the midpoint value in the 
sorted version of that sequence. For example, consider the sequence 
{5, 4, 3, 2, 1} consisting of five (odd number) samples. This sequence 
is already sorted in the descending order. In this case, the median is the 
midpoint value, 3. Consider a different sequence {1, 2, 3, 4} consisting 
of four (even number) samples. This sequence is already sorted in the 

x 1
n
--- x0 x1 x2 x3 … xn 1–+ + + + +( )=

S s0 s1 s2 … sn 1–, , ,{ , }=

xmedian

xmedian

si                    n is odd

0.5 sk 1– sk+( ) n is even



=

i n 1–
2

------------= k n
2
---=
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ascending order. In this case, there are two midpoint values, 2 and 3. As per 
the formula above, the median is equal to 0.5 × (2 + 3) = 2.5. If a student X 
scored 4.5 points on a test and another student Y scored 1 point on the same 
test, the median is a very useful quantity for making qualitative statements 
such as “X lies in the top half of the class” or “Y lies in the bottom half of 
the class.”

Sample Variance
The sample variance of the data set X consisting of n samples is denoted 
by s2 and is defined by the formula

where  denotes the mean of the data set. Hence, the sample variance is 
equal to the sum of the squares of the deviations of the sample values from 
the mean divided by n – 1.

Note The above formula does not apply for n = 1. However, it does not mean anything to 
compute the sample variance if there is only one sample in the data set.

In other words, the sample variance measures the spread or dispersion of 
the sample values. If the data set consists of the scores of a player from 
different games, the sample variance can be used as a measure of the 
consistency of the player. It is always positive, except when all the sample 
values are equal to each other and in turn equal to the mean.

There is one more type of variance called population variance. The formula 
to compute population variance is similar to the one above to compute 
sample variance, except for the (n – 1) in the denominator replaced by n.

The Sample Variance VI computes sample variance, whereas the Variance 
VI computes the population variance. Statisticians and mathematicians 
prefer to use the latter, engineers the former. It really does not matter for 
large values of n, say n ≥ 30.

Use the proper type of VI suited for your application.

Standard Deviation
The positive square root of the sample variance s2 is denoted by s and is 
called the standard deviation of the sample.

s2 1
n 1–
------------ x1 x–( )

2
x2 x–( )

2
… xn x–( )

2
+ + +[ ]=

x
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Mode
The mode of a sample is a sample value that occurs most frequently in the 
sample. For example, if the input sequence X is

then the mode of X is 4, because that is the value that most often occurs in X. 

Moment About Mean
If X represents the input sequence with n number of elements in it, and 

is the mean of this sequence, then the mth-order moment can be 
calculated using the formula

In other words, the moment about mean is a measure of the deviation of the 
elements in the sequence from the mean. Notice that for m = 2, the moment 
about mean is equal to the population variance.

Histogram
So far, this chapter has discussed different ways to extract important 
features of a data set. The data is usually stored in a table format, which 
many people find difficult to grasp. The visual display of data helps us 
gain insights into the data. Histogram is one such graphical method for 
displaying data and summarizing key information. Consider a data 
sequence X = {0, 1, 3, 3, 4, 4, 4, 5, 5, 8}. Divide the total range of 
values into 8 intervals. These intervals are 0–1, 1–2, 2–3, ..., 7–8. 
The histogram for the sequence X then plots the number of data samples 
that lie in that interval, not including the upper boundary.

X 0 1 3 3 4 4 4 5 5 7, , , , , , , , ,{ }=

x

σx
m 1

n
--- xi x–( )

m

i 0=

n 1–

∑=
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Figure 11-1.  Histogram

Figure 11-1 shows that one data sample lies in the range 0–1 and 1–2, 
respectively. However, there is no sample in the interval 2–3. Similarly, two 
samples lie in the interval 3–4, and three samples lie in the range 4–5. 
Examine the data sequence X above and be sure you understand this 
concept. 

There are different ways to compute data for histogram. Next you will see 
how it is done in the Histogram VI using the sequence X.

 

Figure 11-2.  Histogram VI

As shown in Figure 11-2, the inputs to this VI are the input sequence X and 
the number of intervals m. The VI obtains Histogram:h(x) as follows. 
It scans X to determine the range of values in it. Then the VI establishes the 
interval width, , according to the specified value of m

where max is the maximum value found in X, min is the minimum value 
found in X, and m is the specified number of intervals.

0 1 2 3 4 5 6 7 8

1

2

3

∆0 ∆1 ∆7

∆x

∆x max min–
m

--------------------------=
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Let 

Then

Let  represent the output sequence X Values. The histogram is a function 
of X. This VI evaluates the elements of  using

for i = 0, 1, 2, …, m – 1

For this example, 

The VI then defines the ith interval to be in the range of values from 
 up to but not including ,

for i = 0, 1, 2, …, m – 1

and defines the function yi(x) = 1  for x belonging to  and zero elsewhere. 
The function has unity value if the value of x falls within the specified 
interval, not including the boundary. Otherwise, it is zero. Notice that the 
interval is centered about  and its width is . If a value is equal to max, 
it is counted as belonging to the last interval.

For our example,

and as an example 

and

.

m 8=

∆x 8 0–
8

------------ 1= =

χ
χ

χi min 0.5∆x i∆x+ +=

χ0 0.5 χ1, 1.5 … χ7, , 7.5= = =

χi 0.5∆x– χi 0.5∆x+

∆i χi 0.5∆x–( ) χi 0.5∆x+( ) ],[=

∆i

χi ∆x

∆0 0 1 ] ∆1, ,[ 1 2 ] … ∆7, , ,[ 7 8 ],[= = =
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Finally, the VI evaluates the histogram sequence H using

for i = 0, 1, 2, …, m – 1

where hi represents the elements of the output sequence Histogram: h(X) 
and n is the number of elements in the input sequence X. For this example, 
h0 = 1, h4 = 3, …, h7 = 1.

The General Histogram VI is more advanced than the Histogram VI. Refer 
to the LabVIEW Help, available by selecting Help»VI, Function, & 
How-To Help, for more information about the probability and statistics 
VIs.

Mean Square Error (MSE)
If X and Y represent two input sequences, then the mean square error 
is the average of the sum of the square of the difference between the 
corresponding elements of the two input sequences. The following formula 
is used to find the mse.

where n is the number of data points. 

Consider a digital signal x fed to a system, S1. The output of this system 
is y1. Now you acquire a new system, S2, which is theoretically known to 
generate the same result as S1 but has two times faster response time. Before 
replacing the old system, you want to be absolutely sure that the output 
response of both the systems is the same. If the sequences y1 and y2 are very 
large, it is difficult to compare each element in the sequences. In such a 
scenario, you can use the MSE VI to calculate the mean square error (mse) 
of the two sequences y1 and y2. If the mse is smaller than an acceptable 
tolerance, then the system S1 can be reliably replaced by the new system S2.
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Root Mean Square (RMS)
The root mean square, , of a sequence X is the positive square root of 
the mean of the square of the input sequence. In other words, you can 
square the input sequence, take the mean of this new squared sequence, and 
then take the square root of this quantity. The formula used to compute the 
rms value is

where n is the number of elements in X.

RMS is a widely used quantity in the case of analog signals. For a sine 
voltage waveform, if Vp is the peak amplitude of the signal, then the root 
mean square voltage Vrms is given by .

Probability
In any random experiment, there is always a chance that a particular event 
will or will not occur. A number between 0 and 1 is assigned to measure 
this chance, or probability, that a particular event occurs. If you are 
absolutely sure that the event will occur, its probability is 100% or 1.0, 
but if you are sure that the event will not occur, its probability is 0.

Consider a simple example. If you roll a single unbiased die, there are six 
possible events that can occur—either a 1, 2, 3, 4, 5, or 6 can result. What 
is the probability that a 2 will result? This probability is one in six, or 
0.16666. You can define probability in simple terms as the following: the 
probability that an event A will occur is the ratio of the number of outcomes 
favorable to A to the total number of equally likely outcomes.

Random Variables
Many experiments generate outcomes that you can interpret in terms of real 
numbers. Some examples are the number of cars passing a stop sign during 
a day, number of voters favoring candidate A, and number of accidents at 
a particular intersection. The values of the numerical outcomes of this 
experiment can change from experiment to experiment and are called 
random variables. Random variables can be discrete (if they can take on 
only a finite number of possible values) or continuous. As an example of 
the latter, weights of patients coming into a clinic may be anywhere from, 
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n
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say, 80 to 300 pounds. Such random variables can take on any value in an 
interval of real numbers. Given such a situation, suppose you want to find 
the probability of encountering a patient weighing exactly 172.39 pounds. 
You will see how to calculate this probability next using an example.

Consider an experiment to measure the life lengths x of 50 batteries of a 
certain type. These batteries are selected from a larger population of such 
batteries. The histogram for observed data is shown below.

 

Figure 11-3.  Life Lengths Histogram

Figure 11-3 shows that most of the life lengths are between zero and 
100 hours, and the histogram values drop off smoothly when you look at 
larger life lengths.

You can approximate the histogram shown above by an exponentially 
decaying curve. You could take this function as a mathematical model for 
the behavior of the data sample. If you want to know the probability that a 
randomly selected battery will last longer than four hundred hours, this 
value can be approximated by the area under the curve to the right of the 
value 4. Such a function that models the histogram of the random variable 
is called the probability density function.

0 1 2 3 4 5 6

Life Length in Hundreds of Hours

Histogram
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To summarize all the preceding information in terms of a definition, a 
random variable X is said to be continuous if it can take on the infinite 
number of possible values associated with intervals of real numbers, and 
there is a function f(x), called the probability density function, such that

1. f(x) ≥ 0 for all x

2.

3.

Notice from equation (3) above, that for a specific value of the continuous 
random variable, that is for

X = a,

It should not be surprising that you assign a probability of zero to any 
specific value, because there are an infinite number of possible values that 
the random variable can take. Therefore, the chance that it will take on a 
specific value  is extremely small.

The previous example used the exponential function model for the 
probability density function. There are a number of different choices for 
this function. One of these is the Normal Distribution, discussed below.

Normal Distribution
The normal distribution is one of the most widely used continuous 
probability distributions. This distribution function has a symmetric bell 
shape.

The curve is centered at the mean value , and its spread is measured 
by the variance . These two parameters completely determine the 
shape and location of the normal density function, whose functional form 
is given by
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Suppose a random variable Z has a normal distribution with mean equal to 
zero and variance equal to one. This random variable is said to have 
standard normal distribution.

The Normal Distribution VI computes the one-sided probability, p, of the 
normally distributed random variable x.

where X is a standard normal distribution with the mean value equal to zero 
and variance equal to one, p is the probability and x is the value.

Suppose you conduct an experiment in which you measure the heights of 
adult males. You conduct this experiment on 1,000 randomly chosen men 
and obtain a data set S. The histogram distribution has many measurements 
clumped closely about a mean height, with relatively few very short and 
very tall males in the population. Therefore, the histogram can be closely 
approximated by a normal distribution. Now suppose that, among a 
different set of 1,000 randomly chosen males, you want to find the 
probability that the height of a male is greater than or equal to 170 cm. 
You can use the Normal Distribution VI to find this probability. Set the 
input x = 170. Thus, the choice of the probability density function is 
fundamental to obtaining a correct probability value.

The Inverse Normal Distribution VI performs exactly the opposite 
function. Given a probability p, it finds the values x that have the chance of 
lying in a normally distributed sample. For example, you might want to find 
the heights that have a 60% chance of lying in a randomly chosen data set. 

As mentioned earlier, there are different choices for the probability density 
function. The well-known and widely used ones are the Chi-Square 
distribution, the F distribution, and the T distribution. The Probability and 
Statistics palette has VIs that compute the one-sided probability for these 
different types of distributions. It also has VIs that perform the inverse 
operation. 

p Prob X x≤( )=
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12
Point-By-Point Analysis

This chapter discusses the concepts of point-by-point analysis, answers 
frequently asked questions about point-by-point analysis, and provides a 
case study designed to illustrate the use of the Point By Point VIs. Use the 
NI Example Finder, available by selecting Help»Find Examples, to find 
examples of how to use the Point By Point VIs.

Introduction to Point-By-Point Analysis
Point-by-point analysis is a method of continuous data analysis in which 
analysis occurs for each data point, point by point. Point-by-point analysis 
is ideally suited to real-time data acquisition. When your data acquisition 
system requires real-time, deterministic performance, you can build a 
program that uses point-by-point versions of array-based LabVIEW 
analysis VIs.

Real-time performance is a reality for data acquisition. With point-by-point 
analysis, data analysis also can utilize real-time performance. The discrete 
stages of array-based analysis, such as buffer preparation, analysis, and 
output, can make array-based analysis too slow for higher speed, 
deterministic, real-time systems.

Point-by-point analysis enables you to accomplish the following tasks:

• Track and respond to real-time events.

• Connect the analysis process directly to the signal for speed and 
minimal data loss.

• Perform programming tasks more easily, because you do not allocate 
arrays and you make fewer adjustments to sampling rates.

• Synchronize analysis with data acquisition automatically, because you 
work with a single signal instantaneously.
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Using the Point By Point VIs
The Point By Point VIs correspond to each array-based analysis VI that is 
relevant to continuous data acquisition. However, you must account for 
programming differences. You usually have fewer programming tasks 
when you use the Point By Point VIs. Table 12-1 describes characteristic 
inputs and outputs of the Point By Point VI s.

Refer to the Case Study of Point-By-Point Analysis section of this chapter 
for an example of a point-by-point analysis system.

Initializing Point By Point VIs
This section describes when and how to use the point-by-point initialize 
parameter in many Point By Point VIs. This section also describes the 
LabVIEW First Call? function.

Purpose of Initialization in Point By Point VIs
Using the initialize parameter, you can reset the internal state of Point By 
Point VIs without interrupting the continuous flow of data or computation. 
You can reset a VI in response to events such as the following:

• A user changing the value of a parameter

• The application generating a specific event or reaching a threshold

Table 12-1.  Characteristic Inputs and Outputs for Point By Point VIs

Parameter Description

input data Incoming data

output data Outgoing, analyzed data

initialize Routine that resets the internal state of a VI

sample length Setting for your data acquisition system or 
computation system that best represents the area 
of interest in the data
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For example, The Value Has Changed PtByPt VI can respond to change 
events such as the following:

• Receiving the input data

• Detecting the change

• Generating a Boolean TRUE value that triggers initialization in 
another VI

• Transferring the input data to another VI for processing

Figure 12-1 shows the Value Has Changed PtByPt VI triggering 
initialization in another VI and transferring data to that VI. In this case, 
the input data is a parameter value for the target VI.

Figure 12-1.  Typical Role of the Value Has Changed PtByPt VI

Many point-by-point applications do not require use of the initialize 
parameter because initialization occurs automatically whenever an operator 
quits an application and then starts again.

Using the First Call? Function
Where necessary, use the First Call? function to build point by point VIs. 
In a VI that includes the First Call? function, the internal state of the VI is 
reset once, the first time you call the VI. The value of the initialize 
parameter in the First Call? function is always TRUE for the first call to the 
VI. The value remains FALSE for the remainder of the time you run the VI. 
Figure 12-2 shows a typical use of the First Call? function with a While 
Loop.

Figure 12-2.  Using the First Call? Function with a While Loop
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Error Checking and Initialization
The Point By Point VIs generate errors to help you identify flaws in the 
configuration of the applications you build. Several point-by-point error 
codes exist in addition to the standard LabVIEW error codes.

Error codes usually identify invalid parameters and settings. For 
higher-level error checking, configure your program to monitor and 
respond to irregularities in data acquisition or in computation. For example, 
you create a form of error checking when you range check your data.

A Point By Point VI generates an error code once at the initial call to the 
VI or at the first call to the VI after you initialize your application. Because 
Point By Point VIs generate error codes only once, they can perform 
optimally in a real-time, deterministic application.

The Point By Point VIs generate an error code to inform you of any invalid 
parameters or settings when they detect an error during the first call. In 
subsequent calls, the Point By Point VIs set the error code to zero and 
continue running, generating no error codes. You can program your 
application to take one of the following actions in response to the first error:

• Report the error and continue running.

• Report the error and stop.

• Ignore the error and continue running. This is the default behavior.

The following programming sequence describes how to use the Value Has 
Changed PtByPt VI to build a point-by-point error checking mechanism for 
Point By Point VIs that have an error parameter.

1. Choose a parameter that you want to monitor closely for errors.

2. Wire the parameter value as input data to the Value Has Changed 
PtByPt VI.

3. Transfer the output data, which is always the unchanged input data 
in Value Has Changed PtByPt VI, to the target VI.

4. Pass the TRUE event generated by the Value Has Changed PtByPt VI 
to the target VI to trigger initialization, as shown in Figure 12-1. The 
Value Has Changed PtByPt VI outputs a TRUE value whenever the 
input parameter value changes. 

For the first call that follows initialization of the target VI, LabVIEW 
checks for errors. Initialization of the target VI and error checking occurs 
every time the input parameter changes.
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Frequently Asked Questions
This section answers frequently asked questions about point-by-point 
analysis.

What Are the Differences between Point-By-Point Analysis 
and Array-Based Analysis in LabVIEW?

Tables 12-2 and 12-3 compare array-based LabVIEW analysis to 
point-by-point analysis from multiple perspectives. In Table 12-2, the 
differences between two automotive fuel delivery systems, carburation and 
fuel injection, demonstrate the differences between array-based data 
analysis and point-by-point analysis.

Table 12-3 presents other comparisons between array-based and 
point-by-point analysis.

Table 12-2.  Comparison of Traditional and Newer Paradigms

Traditional Paradigm Newer Paradigm

Automotive Technology

Carburation

• Fuel accumulates in a float bowl.

• Engine vacuum draws fuel through a single 
set of metering valves that serve all 
combustion chambers.

• Somewhat efficient combustion occurs.

Fuel Injection

• Fuel flows continuously from gas tank.

• Fuel sprays directly into each combustion 
chamber at the moment of combustion.

• Responsive, precise combustion occurs.

Data Analysis Technology

Array-Based Analysis

• Prepare a buffer unit of data.

• Analyze data.

• Produce a buffer of analyzed data.

• Generate report.

Point-By-Point Analysis

• Receive continuous stream of data.

• Filter and analyze data continuously.

• Generate real-time events and reports
continuously.
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Why Use Point-By-Point Analysis?
Point-by-point analysis works well with computer-based real-time data 
acquisition. In array-based analysis, the input-analysis-output process takes 
place for subsets of a larger data set. In point-by-point analysis, the 
input-analysis-output process takes place continuously, in real time.

Table 12-3.  Comparison of Array-Based and Point-By-Point Data Analysis

Array-Based Analysis
Data Acquisition and Analysis 

with Point By Point VIs

Compatibility Limited compatibility with 
real-time systems

Compatible with real-time systems; 
backward compatible with array-based 
systems

Data typing Array-oriented Scalar-oriented

Interruptions Interruptions critical Interruptions tolerated

Operation You observe, offline You control, online

Performance and 
programming

Compensate for start-up data 
loss (4–5 seconds) with 
complex “state machines”

Start-up data loss does not occur; 
initialize the data acquisition system 
once and run continuously

Point of view Reflection of a process, like a 
mirror

Direct, natural flow of a process

Programming Specify a buffer No explicit buffers

Results Output a report Output a report and an event in real time

Run-time behavior Delayed processing Real time

Run-time behavior Stop Continue

Run-time behavior Wait Now

Work style Asynchronous Synchronous
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What is New about Point-By-Point Analysis?
When you perform point-by-point analysis, keep in mind the following 
concepts:

• Initialization—You must initialize the point-by-point analysis 
application to prevent interference from settings you made in previous 
sessions of data analysis.

• Re-Entrant Execution—You must enable LabVIEW re-entrant 
execution for point-by-point analysis. Re-entrant execution allocates 
fixed memory to a single analysis process, guaranteeing that two 
processes that use the same analysis function never interfere with each 
other.

Note If you create custom VIs to use in your own point-by-point application, be sure to 
enable re-entrant execution. Re-entrant execution is enabled by default in almost all Point 
By Point VIs.

• Deterministic Performance—Point-by-point analysis is the natural 
companion to many deterministic systems, because it efficiently 
integrates with the flow of a real-time data signal.

What Is Familiar about Point-By-Point Analysis?
The approach used for most point-by-point analysis operations in 
LabVIEW remains the same as array-based analysis. You use filters, 
integration, mean value algorithms, and so on, in the same situations and 
for the same reasons that you use these operations in array-based data 
analysis. In contrast, the computation of zeroes in polynomial functions is 
not relevant to point-by-point analysis, and point-by-point versions of these 
array-based VIs are not necessary.

How is it Possible to Perform Analysis without Buffers of Data?
Analysis functions yield solutions that characterize the behavior of a data 
set. In array-based data acquisition and analysis, you might analyze a large 
set of data by dividing the data into 10 smaller buffers. Analyzing those 
10 sets of data yields 10 solutions. You can further resolve those 
10 solutions into one solution that characterizes the behavior of the entire 
data set.

In point-by-point analysis, you analyze an entire data set in real-time. 
A sample unit of a specific length replaces a buffer. The point-by-point 
sample unit can have a length that matches the length of a significant 
event in the data set that you are analyzing. For example, the application in 
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the Case Study of Point-By-Point Analysis section acquires a few thousand 
samples per second to detect defective train wheels. The input data for the 
train wheel application comes from the signal generated by a train that is 
moving at 60 to 70 km per hour. The sample length corresponds to the 
minimum distance between wheels. 

A typical point-by-point analysis application analyzes a long series of 
sample units, but you are likely to have interest in only a few of those 
sample units. To identify those crucial samples of interest, the 
point-by-point application focuses on transitions, such as the end of the 
relevant signal.

The train wheel detection application in the Case Study of Point-By-Point 
Analysis section uses the end of a signal to identify crucial samples of 
interest. The instant the application identifies the transition point, it 
captures the maximum amplitude reading of the current sample unit. This 
particular amplitude reading corresponds to the complete signal for the 
wheel on the train whose signal has just ended. You can use this real-time 
amplitude reading to generate an event or a report about that wheel and that 
train.

Why is Point-By-Point Analysis Effective in Real-Time Applications?
In general, when you must process continuous, rapid data flow, 
point-by-point analysis can respond. For example, in industrial automation 
settings, control data flows continuously, and computers use a variety 
of analysis and transfer functions to control a real-world process. 
Point-by-point analysis can take place in real time for these engineering 
tasks.

Some real-time applications do not require high-speed data acquisition 
and analysis. Instead, they require simple, dependable programs. 
Point-by-point analysis offers simplicity and dependability, because 
you do not allocate arrays explicitly, and data analysis flows naturally 
and continuously.

Do I Need Point-By-Point Analysis?
As you increase the samples-per-seconds rate by factors of ten, the need for 
point-by-point analysis increases. The point-by-point approach simplifies 
the design, implementation, and testing process, because the flow of a 
point-by-point application closely matches the natural flow of the 
real-world processes you want to monitor and control.
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You can continue to work without point-by-point analysis as long as 
you can control your processes without high-speed, deterministic, 
point-by-point data acquisition. However, if you dedicate resources in 
a real-time data acquisition application, use point-by-point analysis 
to achieve the full potential of your application.

What is the Long-Term Importance of Point-By-Point Analysis?
Real-time data acquisition and analysis continue to demand more 
streamlined and stable applications. Point-by-point analysis is streamlined 
and stable because it directly ties into the acquisition and analysis process. 
Streamlined and stable point-by-point analysis allows the acquisition and 
analysis process to move closer to the point of control in field 
programmable gate array (FPGA) chips, DSP chips, embedded controllers, 
dedicated CPUs, and ASICs.

Case Study of Point-By-Point Analysis
The case study in this section uses the Train Wheel PtByPt VI and shows a 
complete point-by-point analysis application built in LabVIEW with Point 
By Point VIs. The Train Wheel PtByPt VI is a real-time data acquisition 
application that detects defective train wheels and demonstrates the 
simplicity and flexibility of point-by-point data analysis. You can find the 
Train Wheel PtByPt VI in the examples\ptbypt\PtByPt_No_HW.llb.

Point-By-Point Analysis of Train Wheels
In this example, the maintenance staff of a train yard must detect defective 
wheels on a train. The current method of detection consists of a railroad 
worker striking a wheel with a hammer and listening for a different 
resonance that identifies a flaw. Automated surveillance must replace 
manual testing, because manual surveillance is too slow, too prone to error, 
and too crude to detect subtle defects. An automated solution also adds the 
power of dynamic testing, because the train wheels can be in service during 
the test, instead of standing still.

The automated solution to detect potentially defective train wheels needs to 
have the following characteristics:

• Detect even subtle signs of defects quickly and accurately.

• Gather data when a train travels during a normal trip.

• Collect and analyze data in real time to simplify programming and to 
increase speed and accuracy of results.
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The Train Wheel PtByPt VI offers a solution for detecting defective train 
wheels. Figures 12-3 and 12-4 show the front panel and the block diagram, 
respectively, for the Train Wheel PtByPt VI.

Figure 12-3.  Front Panel of the Train Wheel PtByPt VI
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Figure 12-4.  Block Diagram of the Train Wheel PtByPt VI

Note This example focuses on implementing a point-by-point analysis program in 
LabVIEW. The issues of ideal sampling periods and approaches to signal conditioning are 
beyond the scope of this example.
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Overview of the LabVIEW Point-By-Point Solution
As well as Point By Point VIs, the Train Wheel PtByPt VI requires standard 
LabVIEW programming objects, such as Case structures, While Loops, 
numeric controls, and numeric operators.

The data the Train Wheel PtByPt VI acquires flows continuously through 
a While Loop. The process carried out by the Train Wheel PtByPt VI inside 
the While Loop consists of five analysis stages that occur sequentially. The 
following list reflects the order in which the five analysis stages occur, 
briefly describes what occurs in each stage, and corresponds to the labeled 
portions of the block diagram in Figure 12-4:

1. In the data acquisition stage (DAQ), waveform data flows into the 
While Loop.

2. In the Filter stage, separation of low- and high-frequency components 
of the waveform occurs.

3. In the Analysis stage, detection of the train, wheel, and energy level of 
the waveform for each wheel occurs.

4. In the Events stage, responses to signal transitions of trains and wheels 
occurs.

5. In the Report stage, the logging of trains, wheels, and trains that might 
have defective wheels occurs.

Characteristics of a Train Wheel Waveform
The characteristic waveform that train wheels emit determines how you 
analyze and filter the waveform signal point-by-point. A train wheel in 
motion emits a signal that contains low- and high-frequency components. 
If you mount a strain gauge in a railroad track, you detect a noisy signal 
similar to a bell curve. Figure 12-5 shows the low- and high-frequency 
components of this curve.

Figure 12-5.  Low- and High-Frequency Components of a Train Wheel Signal

Low-pass component 
of a typical train 

wheel signal

High-pass component 
of a typical train 

wheel signal
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The low-frequency component of train wheel movement represents the 
normal noise of operation. Defective and normal wheels generate the same 
low-frequency component in the signal. The peak of the curve represents 
the moment when the wheel moves directly above the strain gauge. The 
lowest points of the bell curve represent the beginning and end of the wheel, 
respectively, as the wheel passes over the strain gauge.

The signal for a train wheel also contains a high-frequency component that 
reflects the quality of the wheel. In operation, a defective train wheel 
generates more energy than a normal train wheel. In other words, the high 
frequency component for a defective wheel has greater amplitude.

Analysis Stages of the Train Wheel PtByPt VI
The waveform of all train wheels, including defective ones, falls within 
predictable ranges. This predictable behavior allows you to choose the 
appropriate analysis parameters. These parameters apply to the five stages 
described in the Overview of the LabVIEW Point-By-Point Solution 
section. This section discusses each of the five analysis stages and the 
parameters use in each analysis stage.

Note You must adjust parameters for any implementation of the Train Wheel PtByPt VI, 
because the characteristics of each data acquisition system differ.

DAQ Stage
Data moves into the Point By Point VIs through the input data parameter. 
The point-by-point detection application operates on the continuous stream 
of waveform data that comes from the wheels of a moving train. For a train 
moving at 60 to 70 kilometers per hour, a few hundred to a few thousand 
samples per second are likely to give you sufficient information to detect 
a defective wheel.

Filter Stage
The Train Wheel PtByPt VI must filter low- and high-frequency 
components of the train wheel waveform. Two Butterworth Filter 
PtByPt VIs perform the following tasks:

• Extract the low-frequency components of the waveform.

• Extract the high-frequency components of the waveform.
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In the Train Wheel PtByPt VI, the Butterworth Filter PtByPt VIs use the 
following parameters:

• order specifies the amount of the waveform data that the VI filters at 
a given time and is the filter resolution. 2 is acceptable for the Train 
Wheel PtByPt.

• fl specifies the low cut-off frequency, which is the minimum signal 
strength that identifies the departure of a train wheel from the strain 
gauge. 0.01 is acceptable for the Train Wheel PtByPt.

• fh specifies the high cut-off frequency, which is the minimum signal 
strength that identifies the end of high frequency waveform 
information. 0.25 is acceptable for the Train Wheel PtByPt.

Analysis Stage
The point-by-point detection application must analyze the low- and 
high-frequency components separately. The Array Max & Min PtByPt VI 
extracts waveform data that reveals the level of energy in the waveform for 
each wheel, the end of each train, and the end of each wheel.

Three separate Array Max & Min PtByPt VIs perform the following 
discrete tasks:

• Identify the maximum high-frequency value for each wheel.

• Identify the end of each train.

• Identify the end of each wheel.

Note The name Array Max & Min PtByPt VI contains the word array only to match the 
name of the array-based form of this VI. You do not need to allocate arrays for the Array 
Max & Min PtByPt VI.

In the Train Wheel PtByPt VI, the Array Max & Min PtByPt VIs use the 
following parameters and functions:

• sample length specifies the size of the portion of the waveform that the 
Train Wheel PtByPt VI analyzes. To calculate the ideal sample length, 
consider the speed of the train, the minimum distance between wheels, 
and the number of samples you receive per second. 100 is acceptable 
for the Train Wheel PtByPt VI. The Train Wheel PtByPt VI uses 
sample length to calculate values for all three Array Max & Min 
PtByPt VIs.

• The Multiply function sets a longer portion of the waveform to 
analyze. When this longer portion fails to display signal activity for 



Chapter 12 Point-By-Point Analysis

© National Instruments Corporation 12-15 LabVIEW Analysis Concepts

train wheels, the Array Max & Min PtByPt VIs identify the end of the 
train. 4 is acceptable for the Train Wheel PtByPt VI.

• threshold provides a comparison point to identify when no train wheel 
signals exist in the signal that you are acquiring. threshold is wired to 
the Greater? function. 3 is an acceptable setting for threshold in the 
Train Wheel PtByPt VI.

Events Stage
After the Analysis stage identifies maximum and minimum values, the 
Events stage detects when these values cross a threshold setting.

The Train Wheel PtByPt VI logs every wheel and every train that it detects. 
Two Boolean Crossing PtByPt VIs perform the following tasks:

• Generate an event each time the Array Max & Min PtByPt VIs detect 
the transition point in the signal that indicates the end of a wheel.

• Generate an event every time the Array Max & Min PtByPt VIs detect 
the transition point in the signal that indicates the end of a train.

The Boolean Crossing PtByPt VIs respond to transitions. When the 
amplitude of a single wheel waveform falls below the threshold setting, the 
end of the wheel has arrived at the strain gauge. For the Train Wheel PtByPt 
VI, 3 is a good threshold setting to identify the end of a wheel. When the 
signal strength falls below the threshold setting, the Boolean Crossing 
PtByPt VIs recognize a transition event and pass that event to a report.

Analysis of the high-frequency signal identifies which wheels, if any, might 
be defective. When the Train Wheel PtByPt VI encounters a potentially 
defective wheel, the VI passes the information directly to the report at the 
moment the end-of-wheel event is detected.

In the Train Wheel PtByPt VI, the Boolean Crossing PtByPt VIs use the 
following parameters:

• initialize resets the VI for a new session of continuous data 
acquisition.

• direction specifies the kind of Boolean crossing.
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Report Stage
The Train Wheel PtByPt VI reports on all wheels for all trains that pass 
through the data acquisition system. The Train Wheel PtByPt VI also 
reports any potentially defective wheels.

Every time a wheel passes the strain gauge, the Train Wheel PtByPt VI 
captures its waveform, analyzes it, and reports the event. Table 12-4 
describes the components of a report on a single train wheel.

The Train Wheel PtByPt VI uses point-by-point analysis to generate a 
report, not to control an industrial process. However, the Train Wheel 
PtByPt VI acquires data in real time, and you can modify the application to 
generate real-time control responses, such as stopping the train when the 
Train Wheel PtByPt VI encounters a potentially defective wheel.

Conclusion
When acquiring data with real-time performance, point-by-point analysis 
helps you analyze data in real time. Point-by-point analysis occurs 
continuously and instantaneously. While you acquire data, you filter and 
analyze it, point by point, to extract the information you need and to make 
an appropriate response. This case study demonstrates the effectiveness of 
the point-by-point approach for generation of both events and reports in 
real time.

Table 12-4.  Example Report on a Single Train Wheel

Information Source Meaning of Results

Counter mechanism for 
waveform events

Stage One: Wheel number four has passed the strain gauge.

Analysis of highpass filter data Stage Two: Wheel number four has passed the strain gauge and 
the wheel might be defective.

Counter mechanism for 
end-of-train events

Stage Three: Wheel number four in train number eight has 
passed the strain gauge, and the wheel might be defective.
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A
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit our extensive library of technical support resources available 
in English, Japanese, and Spanish at ni.com/support. These 
resources are available for most products at no cost to registered 
users and include software drivers and updates, a KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, 
conformity documentation, example code, tutorials and 
application notes, instrument drivers, discussion forums, a 
measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other 
measurement and automation professionals by visiting 
ni.com/support. Our online system helps you define your 
question and connects you to the experts by phone, discussion 
forum, or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and 
interactive CDs. You also can register for instructor-led, hands-on 
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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