il 7 o

Embedded C [an guage

OEVELOPMENT KIT

—

HI TECH TOOLS
27, rue VOLTAIRE
72000 LE MANS - FRANCE
Tél : (33) 02 43 28 15 04
Fax : (33) 02 43 28 59 61
http = I/ www.hitechtools.com
<Vente Instrumentation Electronigue
& Outils de développement>

For the PICmicro® MCU

i

® CAN Bus
Exercise Book

CAN

CAN Bus

MCP
25050

MCP
25050
Q
GP4 GP5 GF%
__IUM
- E Y RS232
Bl P
N: =2 ©
= O o |m
o el
I, |
Eg UE“ RS237
E _UB“ CB.C7
2 0 W
Q [Lo~
o —{ 1cp

Node

Node

Embedded C Language
Development Kit
For the PICmicro MCU

Exercise Book

CAN Bus

 ol-obhe"
-’

Brookfield, Wisconsin USA
262-797-0455

Copyright © 2003 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form by any
means-electronic, graphic or mechanical, including photocopying, recording, taping or information
retieval systems-without written permission.

Q Unpacking and Installation

Q

Inventory

Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC
must have a spare 9 pin serial port, a CD-Rom drive and a 5 meg of disk space.

U The diagram on the following page shows each component in this kit. Make sure all

(W

items are present.

Software
Insert the CD into the computer and wait for the install program to start. If your
computer is not set up to auto-run CDs, then select START>RUN and enter

D:ASETUP1.EXE where D: is the drive letter for your CD drive.

Click on Install and use the default settings for all subsequent prompts. Click NEXT,
OK, CONTINUE...as required.

Identify a directory to be used for the programs in this booklet. The install program
will have created an empty directory c:\program files\picc\projects that may be
used for this purpose. However, the example files can be found on the compiler CD-
rom, located in the directory D:/CCS/CAN Exercise Book/, where D/ is the location
of your CD-rom.

Select the compiler icon on the desktop. In the PCW IDE click Help>About and
verify a version number. This is shown for the IDE and/or PCM. This ensures the
software is installed properly. Exit the software.

Hardware
Connect the PC to the ICD (5) using the 9 pin cable (6) for ICD-S or the USB™ for
ICD-U and connect prototype board (8) to the ICD using the modular cable (4). Plug
in the AC adaptor (7) and plug it into the prototype board (8). See the diagram in the
section 4 for help.

The LED on the ICD should be on.

Run the program at Start>Programs>PICC> ICD. If the program reports a commu-
nication error, select a different COM port until you find the port connected to the
ICD-S.

O Select Check COMM, then Test ICD, then Test Target. If all tests pass, then the

hardware is installed properly.

Disconnect the hardware until you are ready for Exercise 3. Always disconnect the
power to the prototype board before connection/disconnecting the ICD or changing

the jumper wires to the prototype board.

"The differences between ICD-S and ICD-U are as follows: ICD-S uses RS-232 to connect to a PC, while the ICD-U
uses USB. An USB driver must also be installed before an ICD-U can be used. Install this driver after connecting
the ICD-U to the PC and prototype board as described above. Windows will disptay a New Hardware Found
notification. Insert the disk with the drivers and follow the wizard to complete the installation. RS-232 communication
between the PC and programs on the PIC functions identically with both ICDs.

@ Carrying case.

@ This exercise booklet.

@ Two PC cables

@ Modular cable for ICD

® ICD

® ICD PC cable (or USB cable)
@ AC Adapter

- ® CAN Bus prototyping board

Develapment Kit

EXERCISE BOCK

ecs.

523 Using the Integrated Development Environment (IDE)

O 000

U

Editor

Open the PCW IDE. If any files are open, click File>Close All
Click File>Open. Select the file: ¢:\program files\piccl\examples\ex_stwt.c

Scroll down to the bottom of this file. Notice the editor shows comments,
preprocessor directives and C keywords in different colors.

Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a help
file description for set_timer0 appears. The cursor may be placed on any keyword
or built-in function and F1 will find help for the item.

Review the editor special functions by clicking on Edit. The IDE allows various
standard cut, paste and copy functions along with setting bookmarks and various
C specific functions.

Review the editor option settings by clicking on Options/Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts and many more. The

Options/Customize allows to select icons that should also appear on the toolbar.,

Compiler

Use the white box on the toolbar to select the compiler. CCS offers different compil-
ers for each family of Microchip parts. Some of exercises in this booklet are for the
PIC16F876A chip, an 14-bit opcode part. Make sure 14 bit is selected in the white
box. Other programs are for the PIC18F458 part, a 16-bit Op Code. Select PIC18 for
that part.

The main program compiled is always shown in the lower right corner of the IDE. i
this is not the file you want to compile, then click on the tab of the file you want to
compile. Right click into editor and select Make file project.

Click Options>Include Dirs... and review the list of directories the compiler uses to
search for included files. The install program should have put two directories in this
list to point to the device .h files and the device drivers.

Normally the file formats need not be changed and global defines are not used in
these exercises. To review these setting, click Options>File Formats and
Options>Global Defines.

Click Compile>Compile or the compile icon to compile. Notice the compilation box
shows the files created and the amount of ROM and RAM used by this program.

Press any key to remove the compilation box.

Viewer

O Click View>Symbol Map. This file shows how the RAM in the micro-controller is
used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not
active at the same time.

U Click View>C/ASM list. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:

int_count=INTS_PER_SECOND;

Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory location. Switch to the Symbol Map to find
the memory location where int_count is located.

Q Click View>Data Sheet, then View. This brings up the Microchip data sheet for the

microprocessor being used in the current project.

Chri+2) i
MNew e C/ASM List Enable
Shift+Del .
. QOpen Ctrl+O e Symbol Map Disable
Reopen Shift+Ins Call Tree Reset Shift+Ctrl+F5
ave Ctrl+S : Ctri+A Statistics Run Fs
ave As Copy from file Compiler Messages Single Step E7
all . Paste to file 2!
ave .
= ‘& Find Ctrivr Data Sheet Step Cver Fa
jose Ctrl+ T4 % Replace Ctri+R valld Euses Runtocursor F4
lose All -) =
et F3 Valid Interrupts Snapshot
rink Match Brace Chrl+]
Match Brace Extended Shift+Ctri4+] Binary File ;
rinter Setup Debug Windows
- Goto Lne, ., Clri+G COD Debug File
it ' Indent selection Alt+Fa |
2 Toggle Bookmark About
Goto Bookmark, E_)E'Vil'.e Editor @ gnntcnts
Mew Next Window Ctri+n - Device Selectar % Index F12
2pen ' Preyious Window Chrl+p File Compare Keyword at cursor Fl
Open All Files W*'"“i MNumeric Converter ‘ Last Error
Reopen R;call Open Files & Jerial Port Monitor £ . Editor Shift+F12
-] S D' | . .
Print Al files Editor Properties. .. isassembler Built in functions
=) Extract Cal Data Preprocessor cmds
Find kext In project Customize... _
. = Program Chip Data types
Include Dirs.., Elle Formats
P Global Defines. .. 1D Operators
Clase Project Debugger{Programer... MPLAE Statements
Include Dirs... Internet i .. Technical Suppart

@ CAN Bus Prototyping Board Overview

|

d

The CCS CAN Bus prototyping board has a CAN bus with four nodes on the same
board. A block diagram is within the front cover of this booklet. The four independent
nodes are as follows:

NODE A - PIC18F458

This node features a Microchip PIC18F458 chip. This chip has a built-in CAN bus
controller. There is also an I/O block that provides access to spare |/O pins on the
PIC. The pinout is as follows:

+5|B6|B4{B2/B0|D6|D4|D2|D0|C4({C2|CO0| A4 A2 E2|EQ| G

+5\B7|B5|B3|B1(D7|D5|D3|D1|C5/C3|C1|A5|A3]|A1[E1| G
The following I/O features are also a part of NODE A:
¢ Three LEDs (Red, Yellow, Green)
» LED is lit by outputting a LOW to the I/O pin.
+ One push-button

« |/O pin reads LOW when the button is pressed.
+ Pot to provide an analog voltage source

+ 0 Volts full counterclockwise, 5 Volts full clockwise
+ RS-232 port

NODE B - PIC16F876

This node features a Microchip PIC16F876 chip. This chip does NOT have a built-in
CAN bus controller. Instead, an external MCP2510 CAN bus controlier is used. This
scheme could be used with any PIC microcontroller.

The following I/O features are also a part of NODE B:
¢ Three LEDs (Red, Yellow, Green)

» LED is lit by outputting a LOW to the 1/O pin.
+ One push-button

« |/O pin reads LOW when the button is pressed.
¢ Pot to provide an analog voltage source

« 0 Volts full counterclockwise, 5 Volts full clockwise
¢ RS-232 port

Programs may be downloaded and optionally debugged using the ICD connector.

NODE C - “Dumb” /O Unit

J This node features a Microchip MCP25050 chip. This chip is pre-programmed with
address information and provides CAN bus access to the 8 I/O pins. The following
items are connected to the I/O pins:

¢ Three LEDs (Red, Yellow, Green)
» LED is lit by outputting a LOW to the 1/O pin.
+ Three push-buttons
« /O pin reads LOW when the button is pressed.
+ Potto provide an analog voltage source
» 0 Volts full counterclockwise, 5 Volts full clockwise
¢+ RS-232 port

O This chip may be programmed by removing it from the socket and using the Pro
Mate 1 from Microchip to load in the address information.

NODE D - “Dumb” 7 Segment LED

L1 This node features a Microchip MCP25050 chip. This chip is pre-programmed with
address information and provides CAN bus access to the 8 I/O pins. The I/O pins are
connected to a 7 Segment LED. This allows a number to be displayed via the CAN
bus. ALOW on the I/O pin lights the segment. For example, outputting a OxCO0 in
the GP port will light a 0. A 0xF9 will lighta 1.

U This chip may be programmed by removing it from the socket and using the Pro
Mate Il from Microchip to load in the address information.

E\ Notes:

® Both Node C & D use a Microchip MCP25050 CAN Bus chip.

® This chip is a complete CAN Bus Node that allows eight general input or output
pins, up to four A/D converter inputs and two PWM outputs

® This chip can be configured by programming an internal EEPROM with the ad-
dresses and modes of operation.

® The chip can also be programmed over the CAN Bus.

@ Compiling and Running a Program

(1 Openthe PCW IDE. If any files are open, click File>Close All
Q Click File>New and enter the file name EX3.C

1 Type in the following program and Compile

r —

#include <18f458.h>
#device ICD=TRUE

#fuses HS,NOLVP,NOWDT, PUT
#use delay(clock=20000000)

#define GREEN_LED PIN_AS

main () {
while (TRUE) ({
output_low (GREEN_LED) ;
delay_ms (1000) ;
output_high (GREEN_LED) ;
delay _ms(1000) ;

N)

23\ Notes:

00O

® The first four lines of this program define the basic hardware environment. The chip
being used is the PIC18F458, running at 20MHz with the ICD debugger.

® The #define is used to enhance readability by referring to GREEN_LED in the
program instead of PIN_AS.

® The “while (TRUE)” is a simple way to create a loop that never stops.

® Note that the “output_low” turns the LED on because the other end of the LED is
+5V. This is done because the chip can tolerate more current when a pin is low
than when it is high.

® The “delay_ms(1000)" is a one second delay (1000 milliseconds).

Connectthe ICD to

Click Debugger>Enable and wait for the program to load.

Click the green go icon:

Expect the debugger window status block to turn yellow, indicating the program is
running.

The green LED on the protoboard shouid be flashing. One second on and one

second off.)
The program can be stopped by clicking on the stop icon: @

@CAN Bus Overview

L Nodes on the CAN bus transmit data frames. Each frame has a identifier number
identifying the frame content. The frame is available to all other nodes. Nodes that
have an interest in the frame (based on the identifier) use the data. Other nodes
simply ignore the data.

SIMPLE 4 NODE EXAMPLE:

* Node A: Speed detector
Every 100 ms sends a frame with identifier 1 and data
indicating the vehicle speed.

* Node B: Speedometer display
Looks only for identifier 1 data on the bus. Takes the
data and displays it on a digital display.

*Node C: Cruise control panel
Pressing the SET button sends an identifier 2 frame,
Pressing the OFF button sends an identifier 3 frame.
Neither frame has data.

* Node D: Cruise control module
Module turns on with an identifier 2 frame and off with
an identifier 3 frame. The module uses data from
identifier 1 frames to adjust the vehicle speed.

L Notice this is not a command/response type of protocol. Nodes that have some-
thing to say will say it. Nodes that need to know something will wait for what they
need. A higher level protocol can be implemented to provide more control. Notice
Node C actually can control how Node D works. If a node needs a certain type of
data, it can post a request on the bus for a frame with a particular identifier. The
node responsible for that identifier will respond. A system design should assign a
given identifier (or set of identifiers) to only one node.

BASIC FRAME FORMAT:
DATALENGTH
START DATAREQUEST y BYTES) E\D
I | 4 |
T 11 |[1|12 | 4 0-64 Bits 16 2(3 13
—-Y | —+H—
ADDRESS RESEEVED DATA CRC ACK SILENCE

* See chapter 6 for the Extended Format.

GENERAL RULES:

* All nodes on the bus verify the frame and if any node, detects an error that
node asserts a NACK. When any node asserts a NACK for a frame all nodes
must ignore the frame even if the node did not find an error in the frame. The
sender re-transmits NACKed frames.

* Anode that NACKs a lot of messages or has a lot of messages NACKed
is put on probation (Error Passive state). In this state, the nodes activity is
restricted. If the problem persists, the node must stop all bus transmission
and ignore all incoming packets. This rule is self-enforced by each node
keeping local statistics.

* Anode does not start transmitting unless the bus is quiet for three bit times. If
two nodes start a frame at the same time, one node will bow out while the
identifier is being transmitted. The node to drop out will be the one that first
tries to send a one-bit, when the other send a 0. The 0 is dominant and the
sender of the one will realize there is a collision. This means lower numbered
identifiers have a higher priority.

* The CAN bus permits an alternate format message with a 29 bit identifier.
All the examples we use will be with an 29 bit identifier Frames with 11 and
29 bit identifiers can co-exist on the same bus.

PHYSICAL.:

* There is no universal standard for the physical CAN bus. It requires an open
drain type of bus. It could be a single wire, fiber optic or two wire differential
bus. The latter is the physical bus used on the CCS CAN bus prototyping
board. The Philips PCA82C251 chips are used to interface the bus to the
TTL controllers. This complies with ISO standard 11898 for use in Automotive
and Industrial applications

* The bit rate can be as fast as one million bits per second.

* The start of frame bit is used by the receiver to determine the exact bit time.

* Whenever a transmitter on the bus sends five identical bits, it will send an
extra bit with the reverse polarity. This is referred to as a stuffed bit. The
receiver will ignore the stuffed bits. If a receiver detects six or more bits that
are the same, then it is considered an automatic error.

<63 Simple PIC18 Transmitter

(d Enterthe following program:

f’;include <18F458 . .h> *‘\

#fuses HS, NOPROTECT, NOLVP, NOWDT
#use delay(clock=20000000)
#include <can-18xxx8.c>

#define WRITE_REGISTER_D_ID 0x400

void write_7_segment (int value) {(
const int led_seg[101={0x40,0x79, 0x24, 0x30, 0x19,
0x12,0x02,0x78, 0x00, 0x10};
int buffer[3];

buffer[0]=0x1E; //addr of gplat

buffer [1]=0x7F; //mask

buffer(2]=1¢d_seg(value];

can_putd (WRITE_REGISTER_D_ID, buffer, 3, 1, TRUE, FALSE);

)

void main() {
int i=0;

can_init () ;
can_putd(0x100,0,0,1, TRUE, FALSE); //send an on-bus message

//to wake up mcp250x0’s
delay ms(1000); //wait for node ¢ to power-up

while (TRUE) [
write_7_segment (i) :
delay_ms{1000) ;
if{++1==10)
i=0:

}

- _/

(Q Compile the program and load into Node A and run the program as was done
in Chapter 4.

Q This program should display 0-9 on the 7 segment LED.

T8 Notes:

® The include file “can-18xxx8.c” has the functions required to interface to the PIC18
CAN bus controller.

® The call to can_init() starts the interface.

® This program is designed to send data to Node D. The identifier for Node D is
programmed as 0x400. The MCP25050 device accepts a three byte command. . .

® The can_putd functions have the following parameters:
Identifier
Data pointer
Number of data bytes
Priority (0-3) determines the order messages are sent
Flag to indicate 29 bit identifier
Flag to indicate if this is a data frame

(FALSE) or request for frame (TRUE)
This call query up a frame for transmission on the bus.

® The MCP250xx units require one error free message after power-up to switch to
normal state. The first CAN_putd, to 0x100, sends an empty message which takes
the MCP250xx from power-up to normal.

Before Moving On:

® For future examples, copy the lines in this example before
“void main(} {* into an include file named CCSCANA.C. In the future,
examples will add to this file to build a library of functions specific to the
CCS CAN prototype board.

Extended Format (29 Bit ID)
SRR 1 to indicate

\ tyten ded ResTrved CITL EV|VD
11 11 1|1 18 1121 4 0-64 16 2133
I
Stelzrt \Address/ Data Data Data ACK Silence

Request Length

z Using the MCP250xx for Qutput

Q

The MCP250xx parts used on Nodes C and D allow for discrete input, output and
analog input. These parts have internal registers that set the device ID, the directions
of the pins, valueso f the outputs, scheduling information for outgoing frames and
more. These registers are initialized by programming the part on a Microchip Pro
Mate Il. The registers can also be raed and modified at run time.

The MCP250xx part for Node D has been programmed with a base ID of 0x400. The
low three bits of the ID specify a function. for example, 0x400 is a write register
command, 0x404 is a write configuration comand. Table 4-2 in the data sheet
explains the identifier usage.

The write register command has three bytes of data namely, a register, mask and
value. The value is written to the specified register changing only the bits specified in
the mask. For example, in the previous program, a frame was sent with ID 0x400 and
data Ox1E, Ox7F, 0x40. Ox1E is the output latch for the GP pins. 0x7F caused GP7
to be unchanged (connected to decimal point). The value 0x40 puts a low on pins
GPO to GP5 and a high on GP86. Note that the registers listed in the data sheet tabie
3-1 use addresses for the internal EEPROM. The RAM addresses are 0x1C higher.

Example:

» Send a frame with ID 0x400 and data 0x1E, 0x80, 0x00 to turn on the DP
0x400 —Node D
Ox1E —Output Latch register
0x80 -Only change Bit7
0x00 —All zeros (only Bit 7 relevant)
A 0 or low lights the segment

O Node C has three LEDs: Red (GP1), Yellow (GP2) and Green (GP3). Add the
following function to ccscana.c:

e N A
#define WRITE_REGISTER_C_ID 0x300
enum colors {RED=0, YELLOW=1, GREEN=2};

void write_c_led(colors led, short on) {
int buffer([3]:;

buffer[0]=0x1E;
buffer[l1]1=0x02<<led;
if (on)
buffer(2]1=0;
else
buffer([2]=0x£ff;
1 can_putd(WRITE_REGISTEBR_C_ID, buffer, 3, 1, TRUE,

FALSE) : }

_ J

L1 Then add the following logic to the main program loop in Ex6.c. See Ex7.¢ in example
programs folder from C Compiler CD-rom:

r R ———— \
write_c_led (GREEN, i>1l);

write_e_led(YELLOW, i>4);
write_c_led(RED, i>7);

_ . J _ J

[The program should display 0-9 on the LED and light the green, yellow and red LEDs on
Node C, if, according to the value, is >1, >4, >7 respectively.

&) using the MCP250xx for Input

 The MCP250xx part used on Node C has been programmed to send a frame when-

ever one of the push-buttons change value (GP4-GP6).

(3 The following program will read CAN bus messages looking for that specific ID. It will

then light a LED depending on the button pressed.
[Add this line to ccsana.h;
#define NODE_C_PUSHBUTTON_ID 0x303

L Then enter, compile and load the following into Node A:

_—

’ #include <ccscana.o> -1\

volid main() {
int buffer([8],rx_len, rxstat;
int32 rx_id;

can_init();

can_putd(0x100,0,0,1,TRUE, FALSE); //send an on-bus message
//to wake up mep250x0's
delay ms= (1000} ; //wait for node ¢ to power-up

while (TRUE) ({
if (can_kbhit ()) {
if(can_getd(rx_id, &buffer(0], rx_len, rxstat))
if (rx_id == NODE_C_PUSHBUTTON_ID) {
write_c¢_led(YELLOW, !bit_test(buffer[l],4));
write_c_led(GREEN, !bit_test(buffer[1],5)):
write_c_led(RED, !bit_test(buffer[l].6));

(
\.

O Thewrite_c_led function calls send a frame to Node C to light a LED. We will now
add a program to Node B to look for this same data and perform the same action at
Node B.

\

(;;nclude <16F876A.H>
#fuses HS, NOPROTECT, NOLVP, NOWDT
#use delay{clock=2500000)

#include <can-mcp2510,c:»

#define RED_LED PIN_Al

#define YELLOW_LED PIN_A2
#define GREEN_LED PIN_A3

#define WRITE_REGISTER_C_ID 0x300

main() {
int32 rx_id;
int rx_len, rxstat, buffer[8];

can_init () ;

while (TRUE) {

if { can_kbhit()) {
if{can_getd(rx_id, &buffer[0], rx_len, rxstat)) l
if ((rx_id == WRITE_REGISTER_C_TID)&&
(buffer[0] == 0xle)) {

if (buffer[1]&2)

output_bit (GREEN_LED, 'bit_test(buffer[2],1)};
if(buffer[l]&4d)

ocoutput_bit (YELLOW_LED, !bit_test{buffer([2]1,2));
if(buffer(l1]&8)

cutput_bit (RED_LED, !'bit_test(buffer[2].,4));

@ Using the MCP250xx for Analog Input
and Scheduling Data

[The MCP25050 can be configured for up to four analog inputs. The A/D converter is
10 bits (0-1023). The following program makes a request for the ID with A/D results
10 times per second, then waits for the frame to be sent with that ID. This is a clear
example to show these features. However, it is not a good scheme for a real applica-
tion. This program will hang if the MCP25050 does not answer.

3 Enter this program, compile and load into Node A. Test the program by turning the

Node C pot. Node A should use the A/D reading to display a number 0-9 on the Node
DLED.

'#include <eecscana.c>

vold main() {
intl waiting:
int buffer([8],rx_len, rxstat;
int32 rx_id;
intlé ad_wval;

can_init();

can_putd(0x100,0,0,1,TRUE, FALSE); //send an on-bus message

//to wake up mcp250x0's
delay _ms (1000) ; //wait for node ¢ to power-up

while (TRUE) {
delay_ms (100} ;
can_putd(WRITE_REGISTER_C_ID, (¢, 8, 1, TRUE, TRUE);
waiting=TRUE;
while(waiting)} {
if (can_kbhit())
if{can_getd(rx_id, &buffer[0], rx_len, rxstat))
if (rx_id == WRITE_REGISTER_C_ID) {
write_7_segment (buffer(2]/26);
waiting=false;

Q

4

The rate the data is updated to the display is determined by the delay_ms line. Try a
delay_ms(1000) to get a feel for how that lag works. Then try a delay_ms(1).

Up to this point, we have relied on the MCP250xx settings to pre-programmed into the
EEPROM. In this next program, the pre-programmed settings will be changed. This
chip has the capability to send certain messages when certain events happen, or on
some regular basis. We will program the chip to send out the analog frame roughly
10 times per second.

O Add#define NODE_C_SCHEDULED 0x301 to ccscana.c.

-

N _ N
' #include <ccscana.c> \

void main() {

int buffer[8],rx_len,rxstat;
int32 rx_id;

can_init{);

can_putd (0x100,0,0,1, TRUE, FALSE); //send an on-bus message
//to wake up mep250x0's
delay_ms (1000) ; //wait for node c to power-up

buffer[0]=0x2C;

buffer{1]=0xFF;

buffer{2]1=0xD7: // Sched ON, For READ ADC, clock *4096 *16 * 7
can_putd (WRITE_REGISTER _C_1ID, buffer, 3, 1, TRUE, FALSE);

while (TRUE) {
if (can_kbhit()) {
if(can_getd(rx_id, &buffer[0], rx_len, rxstat)) {
if (rx_id == NCODE_C_SCHEDULED) {
write_7_segment (buffer([2]1/26});
}

12 !@) A CAN Bus Monitor

3 The following program is intended for Node B. It will take all frames from the CAN bus
and send them over RS-232 link. A PC must be connected to the RS-232 port to view
the data. Use the SIOW program to view the data on the RS-232 port.

#include <16F876A.H> q‘\
#fuses HS, NOPROTECT, NOLVP, NOWDT

#use delay(clock=2500000)

#use rs232 (baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#include <can-mcp2510.c>

void main() {
int32 rx_id;
int i, rx_len, buffer([8];
struct rx_stat rxstat;

can_init{);

while (TRUE) {
if (can_kbhit{)) {
if (can_getd(rx_id, &buffer[0], rx_len, rxstat)) {

printf ("%LX: {%U) ",rx_id,rx_len);

if (!'rxstat.rtr)

for(i=0;i<rx_len;i++)
printf("%X " ,bufferf{il});
}

if (rxstat.rtr) {printf(" R ");}
if (rxstat.err_ovil) {printf(" O "};}
if (rxstat.inv) {printf(" I "};}

printf("\r\n");

_ y,

[0 Enter, compile and load this program into Node B. Load the EX8A.C program into
Node A.

J Notice the CAN bus activity between Nodes A and C are mentioned and reported over
the RS-232 port.

00000300:
00000401:
00000301:
00000303:
00000300:
00000300:
00000303:
00000300:
00000300:

© BBEEER

ut:

(8) R

(0)

(0)

(2) 40 3E
(3) 1E 04 FF
(3) 1E 08 FF
(2) 40 3C
(3) 1E 04 FF
(3) 1E 08 FF

Qﬂ Data Filtering

) Looking at the previous program it is clear that the processor must spend time
reading every frame on the CAN bus. This processing time is spent even though that
node only has interest in one message type. With a large number of nodes on the
CAN bus, this can cause considerable wasted processing time. The solution is to
get the CAN bus controller hardware to filter the data and only bother the
microcontroller with data that is of interest. The following are several popular methods
for filtering.

* BCAN —Basic CAN

The system is designed such that various bits in ID are used to group common
frames together. Amask and reference ID are programmed into the CAN bus
controller. If (FRAME_ID & MASK) == REF_ID then the frame is saved for the
microcontroller, otherwise it is discarded. It is common in a BCAN controller to
assign a priority to outgoing frames. This way as the controller waits for bus time
messages can be sorted.

Advanced variations of BCAN can allow multiple masks and reference 1Ds to be |
specified.

BCAN is the scheme used on the Microchip CAN controllers. Microchip has two
buffers. One allows a mask and two reference IDs. The other allows a mask and
four reference IDs.

* FCAN - Full CAN

Alist of all possible IDs of interest to the microcontroller is programmed into the
CAN controller. Abuffer is allocated in the controller for each ID. The
microcontroller can then poll for data by checking buffers of interest or program
certain ID’s to generate an interrupt. The same buffer scheme is used for
outgoing frames. The FCAN controller can handle requests for a particular ID
without microcontroller intervention.

Consider the previous program. If we had a FCAN controller then instead of
waiting for a message and then acting on it the software could just request the
last frame for a given ID and use the data. The same data might be used over
and over until it is replaced.

Advanced variations of FCAN allow BCAN like masks to be applied to buffers.

* DCAN - Direct CAN
This is a hybrid approch where you get BCAN like masks and reference lds,
FCAN like indivisual receive buffers, and a BCAN like transmit_ buffer.

* TTCAN - Time Triggered CAN

The bus bandwidth is split into time slots. Specific frame ID’s are assigned to
certain timeslots. This limits the frequency for the data and helps nodes to know
when to be looking for data.

L The following program will set up filtering on the Node B data monitoring program.
We will set themask and referene ID to only monitor data to Node D. Load EX9.C
into Node A and EX10 (with the following additions) into Node B at the start of
main(): |

can_set_mode (CAN_OP_CONFIG) ; //must be in config mode l
//before params can be set

can_set_1d(RX0MASK, O0XFF00, TRUE)} ;

1 can_set_i1id(RXOFILTERO, 0x400, TRUE) ;

can_set_id(RXOFILTER1, 0x400, TRUE) ;

can_set_id{(RX1IMASK, 0xFF00, TRUE) ;
can_set_1d(RX1FILTERZ2, 0x400, TRUE)} ;
can_set_1d(RX1FILTER3, 0x400,TRUE} ;
can_set id(RX1FILTER4,0x400,TRULE) ;
can_set_id(RX1FILTERS5, 0x400, TRUE) ;
can_set_mode (CAN_OP_ NORMAL) ;

\. v,

Q@Getting Off the Prototyping Board

O PHYSICAL

As previously noted, there is no standard physical interface. The PCA82C251
chips used on the prototype board use a popular two- wire CAN bus. Connections
can be made directly from the prototyping board to an external CAN bus via the
three pin connector at the top of the board (CANL, CANH and Ground). When
using this connection over some distance, a 120 ohm resistor should be put on
both ends of the bus. This driver chip can handle up to 110 nodes and a total bus
length of 100 feet. The bus can be much longer if a slow bit time is used.

An extra driver chip has been installed on the prototype board. This allows for an
easy connection to an external CAN controller that has TTL output. The three pin
connection has Transmit, Receive and Ground connections to the spare
PCA82C251 chip.

Some CAN Transceivers J
Faulit
Nodes Speed Tolerant
Philips PCA82C251 110 1 meg NO
PCA82C252 15 125k YES
TJA1054 32 125k YES Low EMC
Maxim MAX3058 32 1 meg NO
MAX3050 32 2meg NO l
MAX3054 32 250k YES
m SN65LBC031 500k NO
SN65HVD251 120 1 meg NO
SNE5HVD232 120 1 meg NO 3.3V

O TIMING

All nodes on the bus must have the same target bit time. The fastest time allowed
by the PCA82C251 is 1 million bits per second.

A single bit time is divided into four segments:

Sync period

Propagation period (allow for delays between nodes)
Phase 1 period

Phase 2 period

The data is sampled for the bit between phase 1 and phase 2.

Each of the four segment times may be programmed in terms of a base time (Time
Quanta or Tq).

The baud rate settings are made in the .h files (like can-18xxx8.h). We have made
the following settings:

Sync period =1 Tq
Propagation period =3 Tq
Phase 1 period=6Tq
Phase 2 period=6Tq
The total bit time is therfor 16 Tq.

Tq is set via the prescaller. The formula is:
Tq = (2 x (prescaller+1))/clock

We use a clock of 20 mhz and have the prescaller set to 4. Therefor:
Tq = (2 x (4+1))/20000000 = 0.1 us

And the bit time is 1.6 us or 125K.

I One CAN Bit 1

Sync Propagation| Phase I Phase Il

Sample
Point

Node A

+3V

+8v
+3V A 47K
ico 1
AnbLad connecTar |
] +3V
4 J_
- -
= sy " RED TYELLOW
= « 4
@ ¥ F
PUSHBUTTON .{: ey
[&;} ——[Bs >
J ? —{H >
T sy - - 49 = 7
L <as 1 7A+=:“:3§“JEBB§Q’BJJ’———§D
-
; B las Bz _ﬂ__,__im
CREEN <CEE—eo o (3L —E
v CEO—U Py £ TN I*w
<Eap—Aez +ov |38
e PICIBF458 o L,
; 3 {ong ozt B — >
, » —4 et kin o 5F
15pf — =
Eol20 wie CLKOUT s T =
18pt LYY S G |y
c7 |-
30 g
45y
POWER [N
I——_—l" e vee
o1 vs-
Ly
T = - USER _
= = = TERMINAL <2 v i
sav HLOEK oo —————{r20u R2IN L‘l_
ey A 12_{pour A H3- 13 B
I LTy THOUT —'-"—l__r____r
. TN T2our
v
+5' RXD "L"‘F“; MAXT120
2 L3
!é +3v

R§—232 JACK

Node B

+3v

47K

L+1]
COMWNECTOR

I——PE

13p1 Y +5Y d
3 20 we v d en vee
6p! c1- vs-
1
30 +av wr 2 "B3 l ; F2+ END
sv £ oo s 1t oo pos |22 ca- VsS4
T 11 alu /P oA ——X T\ T
T—L 1 1 rxean sa P2 wow Lefeout Ao 13-
o T 1 b roor - RS-232 JACK
ER— 4 Z loucan souc HE— 0862
CAML XD o eser vool 22 e ®lram rzour
TYoRTS xoor nez/Ry 2 A
‘TERTS RYHF ros/1x HL
TXATS cLrout Rad [
iR
WCFZB10 .
RAZ
rasE
ans o =
- Ras H—
PCIRFRTE

Node C

+BY

) :

4

RED -YELLD'I' t GREEN b
lezn wa | 45w ‘ SOURCE ¥ xY y 1 -
5pt T_M_ X K 5 _I_I_“ _L_l_.t N
19 ¥
o5 330 +5V gra [- oK ?L_" ?i ok ?-1 I " '-W 1
o Biosr ep1f2
- gy erz = — =
45V RXD| RXCAM cPafd
a—Ltew ™ TXCAN P4 [+
C—Lcaw vReF P oo oespd '
w7 ool
CP250KX

Node D

15
15
+5V

2 —

+5v

120 wHz
pf T
330 | +5v PO ANNZL 7
8 losci cP1 AN 61 A
0SC2 GP2 AAAZL 4 r| 8
3 L5y rxp 14 12_fexeAN gP3 AANAIZ 21 e
C——=Ecane. o 13 frvcaN epa AANZL HE | o +5V
CANH——TLcanH vrer [GND GPs ANNZE 9l o
2 fonp Rs |2 1 {ap7 cPB AANZL 10 T op D
MCP250XX 120 op 3
PCAB2C2Z51
i VAVAY - LED560
10
External
€an—-o
CAan—}2o
External CAN
3o
+5Y |
3 1
+5V XD 1
6 4
CANLF——=—{cANL D
S o 2o | External TTL
CANH——CANH VREF [— 36
2_1GND RS [-B
PCAB2C251 -
® NN
- 10

RTHER REFERENCES:

be official CAN website: http://www.can.bosch.com/

e CAN Tutorials: http://www.kvaser.com/can/edu/
: gt of CAN resources: http://www.can-cia.de
Forum: http://groups.yahoo.com/aroup/CANbus/messages

ufacturers of CAN Bus
itors and performance tools: http://www.intrepidcs.com/mcp2510/PIC18F452

